
	
	
	
	

	

	
	
	
	
	
	
	

 

Large deformation analysis for a planned tunnel crossing heavily 
squeezing ground 

A. Vrakas(1), G. Anagnostou(1) 
(1)ETH Zurich, Switzerland 

ABSTRACT: A large strain analytical solution is presented for the short-term Ground Response Curve (GRC) in 
saturated squeezing ground and this solution is applied to a geotechnically demanding part of the planned 
Gibraltar tunnel. Squeezing, the appearance of large, usually time-dependent deformations in tunnelling, is 
associated with high overburden in combination with poor mechanical properties and often high pore pressures. 
Here the focus is on the short-term response of the ground. It is characterized by the condition of constant water 
content and is important for the deformations and stability near the tunnel face. Two large breccia zones in the 
middle of the planned Gibraltar tunnel typify saturated, weak, low permeability ground under high pore pressure. 
Motivated by preliminary computational investigations, which indicated extremely large convergences, here the 
short-term ground response in these regions is investigated by applying an analytical solution that takes into 
account large strains. The computational results underline the importance of large strain formulation for extreme 
squeezing conditions, show the favourable effect of plastic dilatancy and support the hypothesis that heavy 
squeezing may occur in the breccia zones of the Gibraltar tunnel. 

1 Introduction 

Squeezing phenomena have been encountered in a great variety of underground projects. Extended 
reports exist in the literature, inter alia from several tunnel cases in Japan (Aydan et al. 1996), the 
Gotthard base tunnel in Switzerland (Kovári et al. 2000) the Bolu tunnel in Turkey (Dalgıç 2002) and 
the Lyon-Turin base tunnel in France (Bonini and Barla 2012). As indicated by the empirically known 
stabilizing effect of an advance-drainage (Steiner 1996, Kovári 1998, Barla 2002), high pore pressures 
favour the development of squeezing. 

From a theoretical point of view, the presence of water leads to a gradual increase of tunnel 
convergences. Initially (t=0), the instantaneous or short-term ground response is undrained, i.e. it 
occurs under constant water content. During this phase excess pore pressures develop (negative in 
the case of the conventional Mohr-Coulomb model) due to the hydro-mechanical coupling. Then, the 
pore volume and the water content change, more or less rapidly depending on the seepage flow rate. 
This time-dependent process leads to additional displacements around the opening and reaches 
steady state after a period of time (theoretically t=∞), which may be long or short depending on the 
permeability of the ground. Under certain excavation and drainage conditions, which imply a specific 
stress history (Anagnostou 2009b), the long-term or steady state response can be handled analytically 
via an uncoupled approach facilitating its mathematical description (Lembo Fazio and Ribacchi 1984, 
Graziani and Ribacchi 2001, Anagnostou and Kovári 2003). In general, the transient phase that 
precedes the long-term constitutes a complex process, which is highly affected by the hydraulic as 
well as the mechanically imposed conditions. The a priori assumed stress history in combination with 
the stress path dependency of an elastoplastic material has been examined in the past by Giraud et 
al. (1993), Graziani and Ribacchi (2001), Anagnostou (2009b) and Graziani and Boldini (2012). 

On the other hand, the instantaneous response of saturated ground around a deep opening under 
conditions of either spherical symmetry (spherical cavern) or axial symmetry (cylindrical tunnel in 
plane strain) can be treated mathematically in an exact way, especially assuming both grains and fluid 
as incompressible. The first complete elastoplastic solutions to the problem of a contracting cavity in 
an infinite medium are attributed to Salençon (1969), who presented closed-form expressions using 
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the Mohr-Coulomb (MC) and the Tresca failure criteria. The latter can be used for the equivalent total 
stress analysis of an isotropic elastoplastic material (with Eu, vu=0.5, su, φu=0o) to model its undrained 
behaviour under zero volumetric deformations. In retrospect, the excess pore pressures can be 
evaluated from the variation in the mean total stress. This process was utilized by Mair and Taylor 
(1993), who reproduced the previous solution and applied it to the prediction of short-term 
deformations around tunnels driven in London and Boom clay. Mair (2008) showed recently the 
usefulness of the aforementioned model through various comparisons with field measurements 
highlighting its attraction, which is based on its simplicity. Yu (2000) also included this solution in his 
thorough review of cavity expansion methods in Geomechanics, suggesting further a rigorous large 
strain one, by making use of the appropriate incompressibility condition in the plastic region that is 
formed around the opening. Anagnostou (2009a) performed a comparative effective stress analysis 
considering infinitesimal deformations in combination with the MC model without dilatancy, while the 
respective complete expressions that account for a non-zero dilation angle can be found in the 
dissertation of Vogelhuber (2007). The analytical relationships that are used in this paper have been 
derived lately by Vrakas and Anagnostou (2013), taking into consideration finite strains in the whole 
medium as well as an elastic-perfectly plastic material with a non-associated flow rule. 

2 Experimental studies on breccias around the proposed Gibraltar tunnel 

The proposed Gibraltar tunnel is an undersea option for the creation of a fixed link between Europe 
(Spain) and Africa (Morocco), as can be seen in Figure 1a. The tunnel solution prevailed over the 
bridge one for several reasons (Pliego 2005), but is still a very demanding and challenging project 
from an engineering point of view. Two main alignments have been considered, the B1 and the B2 
(Fig. 1b). The main formation that the tunnel will cross is flysch, but there are two disturbed zones 
filled with clayey breccias of very low quality presented in Figure 1b (Dong et al. 2013). The 
combination of poor ground conditions, high overburden and high pore pressures can result in 
extremely difficult tunnelling conditions (Kovári 1998), referred commonly as heavily squeezing. 
Another characteristic of these breccias is their very low permeability, which makes the ground 
response strongly time-dependent. 

                                (a)                                                                                      (b) 

 

Figure 1. (a) Location map of the proposed Gibraltar Strait tunnel (Pliego 2005) and (b) geological profile 
with the breccia zones as well as the depth of the tested samples (Dong et al. 2013) 

Dong et al. (2013) carried out consolidated drained (CD) and consolidated undrained (CU) triaxial 
tests on almost fully saturated breccia samples (average degree of saturation equal to 95%) retrieved 
from various depths (Fig. 1b). Two main zones were considered for the assessment of the 
experimental results according to the location of the samples: an upper (20-120 m undersea, 7 
specimens Z09-Z15) and a lower one (200-320 m undersea, 5 specimens Z01-Z05). After careful 
processing of the test data and making the appropriate corrections, values for the cohesion, c, and the 
friction angle, φ, were obtained in compliance with the MC failure model. The respective curves are 
displayed in Figure 2. A minimum, a maximum and a mean envelope has been determined for each 
zone in order to capture the range of the test results. The values of the ground parameters are given 
in Table 1 in combination with the elastic properties (Young’s modulus E and Poisson’s ratio v) and 
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the in situ stress field. The total stresses, σο, and the pore pressures, po, which will be used in the 
calculations, correspond approximately to the mean depth of each breccia zone. 

Table 1. Estimated data for the calculations 

Breccia zone 
- envelope 

c 
[MPa] 

φ 
[degο] 

E 
[MPa] 

v 
[-] 

σo 

[MPa] 
po 

[MPa] 

Upper - min 0.076 20.4 500. 0.30 4.5 3.5 

Upper - max 0.375 26.0 500. 0.30 4.5 3.5 

Upper - mean 0.226 23.2 500. 0.30 4.5 3.5 

Lower - min 0.327 9.0 300. 0.30 8.0 5.0 

Lower - max 1.306 9.4 300. 0.30 8.0 5.0 

Lower - mean 0.817 9.2 300. 0.30 8.0 5.0 
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Figure 2. Strength envelopes of the tested samples (dashed lines, Dong et al. 2013) and MC envelopes 
considered in the computations (solid lines) 

3 Analytical solutions for the GRC under short-term conditions 

Analysing the ground – support interaction by considering the Ground Response Curve (GRC), which 
relates the support pressure with the wall displacement, is a widely used method in tunnelling. As has 
been previously described, the breccias exhibit very low permeability and consequently the short-term 
response, which is examined in this paper, becomes critical for the stability and deformations in the 
vicinity of the advancing tunnel heading. Preliminary investigations by Floria et al. (2008), Panciera 
(2009) and Anagnostou (2010) indicated the possibility of extremely large short-term convergences, 
which violate the underlying small strain assumption and become physically meaningless. This 
motivated the Authors to study the short-term response of the breccias to the tunnel excavation within 
the framework of the large deformation theory. 

The behaviour of a deep circular tunnel away from the face can be assumed to fulfil the axisymmetric 
plane strain conditions facilitating to a large degree the mathematical operations. As a result, a 
cylindrical cavity in an infinite homogeneous and isotropic medium is considered, unloaded from an in 
situ uniform state of stress under undrained conditions, i.e. the volumetric strain εvol is equal to zero. 
The ground behaviour is linearly elastic-perfectly plastic obeying the MC failure criterion with a non-
associated plastic flow rule. The correct relations for the instantaneous response of the ground based 
on the small deformation theory can be found in the dissertation of Vogelhuber (2007), while the 
necessary relations for the construction of the GRC in compliance with the large deformation theory 
are presented concisely below, for the sake of completeness. They constitute part of the general 
relations, which account for spherical or cylindrical cavities as well as elastic-brittle plastic materials, 
developed by Vrakas and Anagnostou (2013). 

A circular tunnel with an initial radius ao is considered. The in situ total stresses are assumed equal to 
σο, while the in situ pore pressures equal to po. The effective stresses are defined as the difference 
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between the total stresses and the pore pressures, while the convention of compression positive is 
used in the relationships of this paper. A radial displacement ua (= ao-a, positive inwards) is imposed at 
the tunnel wall leading to the derivation of a corresponding support pressure σa. An effective stress 
analysis is performed based on the theory of large deformations. The equilibrium of each infinitesimal 
element is considered in the current configuration, the stresses correspond to Cauchy (or true) 
stresses (i.e. force per current unit area), while an appropriate strain definition, Hencky (or logarithmic) 
strains, is adopted. The ground behaviour around the opening during unloading can be either purely 
elastic or elastoplastic forming a plastic ring of outer radius ρ (Fig. 3). The subscript zero in ao is used 
for the initial configuration in contrast to the current one, where the radii a and ρ are written without 
subscripts. 

 

Figure 3. Computational model for a deep circular tunnel (cylindrical cavity) 

The critical value of the displacement ua, i.e. the displacement at the onset of plastification, is given by 

 
 
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E
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The stress value σ'ρ appearing in Eq. (2) is equal to the effective stress at the elastoplastic interface: 

 
2
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In the case of elastic response, i.e. if ua is smaller than the critical one given by Eq. (1), 
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while Li2 is the Euler dilogarithm function, expressed as (Lewin 1981) 
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It should be noted here, that the infinite series converges rapidly. Hence, the first few terms may be 
used to provide satisfactory results. 

In the case of elastoplastic response, i.e. if ua is larger than the critical value given by Eq. (1), 
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4 Application to the Gibraltar tunnel 

4.1 The GRC considering zero dilatancy 

Figures 4 and 5 show the GRCs and the radius of the plastic zone, respectively, for the three MC 
failure envelopes of each breccia zone plotted in Figure 2. 
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Figure 4. Ground response curves (ψ = 0o) 

The error arising from the small deformation theory for convergence values ua/ao greater than ten 
percent is obvious in these graphs. Note that in the case of the worst ground properties considered, 
the infinitesimal strain theory fails to provide a rational result within the theoretical allowable area of 
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displacements, which is between zero and ao. Another interesting observation is that the size of the 
plastic region is not proportional to the cavity wall convergences. Specifically, although the upper zone 
provides smaller displacements than the lower one, it presents larger plastic radii, demonstrating in 
the clearest way the contribution of all the material properties (E, c and φ) and the in situ stress field. 
However, heavily squeezing conditions could occur in both zones. 
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Figure 5. Normalized radius of the plastic zone as a function of the support pressure (ψ = 0o) 

4.2 The influence of dilatancy on the GRC 

Figures 6 and 7 demonstrate the effect of dilatancy, i.e. non-zero plastic volumetric strains, on ground 
behaviour for the mean strength envelope. As can be observed, even a small dilation angle has a 
favourable effect with respect to convergences: the higher the dilation angle, the lower the support 
pressure for a given tunnel radial displacement. This result can be explained by taking into 
consideration the stress and pore pressure fields around the cavity, which are presented in Figure 8 
for the mean MC envelope of the lower breccia zone. 
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Figure 6. Ground response curves (strength parameters according to the mean MC envelope of the 
breccias) 

A dilatant material tends to expand during plastic yielding. As the expansion is constrained by the pore 
water in the short-term, negative excess pore pressures develop, which are higher than for non-
dilatant behaviour. The pressure drop within the plastic zone, which is more pronounced in the case of 
dilatancy, is favourable because it increases the effective stresses and thus the resistance to 
shearing. Figure 8 confirms these considerations demonstrating the favourable effect of the dilation 
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angle according to the MC model (small convergences, less extended plastic zone around the 
opening). 
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Figure 7. Normalized radius of the plastic zone as a function of the support pressure (strength parameters 
according to the mean MC envelope of the breccias) 
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Figure 8. Stress and pore pressure distributions along the radial direction (large strain analysis, material 
constants of the lower breccia zone, σa = 0 MPa, ao = 5 m) 

5 Conclusion 

The short-term GRC in compliance with experimental data, obtained from tests on breccias from the 
Gibraltar Strait, leads to extraordinary results emphasizing the expected presence of heavily 
squeezing ground conditions throughout these critical zones. 

The short-term GRC that accounts for elastoplastic material behaviour as well as large strains, is 
useful for convergence assessments in the case of extreme squeezing, demonstrating in combination 
with the results obtained using small strain theory, the limited validity of the latter. It can offer a 
complete scientific and rational approach to the problem of a contracting cavity through an effective 
stress analysis under undrained conditions without imposing any restriction on the magnitude of 
displacements. 

The existence of dilatancy affects to a great extent the short-term response of the ground around a 
circular opening, decreasing tunnel wall convergences, causing a non-uniform distribution of the 
effective stresses within the plastic region and increasing the negative excess pore pressures. 
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