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3.1 INTRODUCTION

3.1.1 Preliminary Remarks

BRA R e R R R AP A TR b B

It is a common practice in numerical modeling of geological materials to assume that weakened or
partly fractured materials can be modeled by a linear elastic material with a low modulus of
elasticity, An extreme example is a coal mine goaf where the modulus is often assumed to be of the
order of one-tenth or less of the coal or roof material (e.g. Trueman [1]). The motivation behind this
procedure is obvious. Such materials are highly deformable and their response to load is similar to
that of a low-modulus medium. Often, not enough is known of their properties to justify an
! elast!c-plastic analysis. The latter also consumes a lot of computer time and resources.

3 It is the purpose of this chapter to show that the above procedure fits within the framework of the
deformation theory of plasticity (see for example, Vermeer [2]). However, an important addition to
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50 Rock Mechanics Continuum Modeling

present practice needs to be made to conform to the principles of the deformation theory. This
addition is that the initial or in situ stress unloaded from such a weakened material to model the
formation of an excavation must be reduced also. This concept will be explained in detail in
Section 3.2.

The major difficulty in the numerical modeling of geological materials is in the determination of
the input parameters. Results of laboratory tests for such parameters as the modulus of elasticity and
Mohr—Coulomb or Hoek-Brown failure properties are not always relevant to the rock in situ.
Attempts have been made to overcome these problems by the scaling of input parameters, e.g.
Wilson [3], and Rock Mass Classification schemes, described in Hoek and Brown [4], have also
been used to infer input parameters relevant to in situ conditions (e.g. Bieniawski [5], Follington and
Isaac [6]).

An alternative approach is the use of back-analysis (e.g. Sakurai [7]). For large projects, usually in
civil not mining engineering, pilot tunnels are driven and displacements and stresses are extensively
monitored. Back-analysis techniques have been developed to infer from the results of these
measurements the input parameters for numerical models. Weakened regions are modeled by
material of lower modulus than the intact medium. Thus the work described in this chapter is
relevant to this type of analysis also. It will be shown that the results obtained from back-analysis
can conform to a conventional plasticity theory provided the reduced in situ stress mentioned above
is used.

It will be shown in the chapter that equivalent elastic properties of a weakened or yielded rock can
be related, via the deformation theory of plasticity, to failure and postfailure properties, such as pre-
and post-failure cohesion and angle of friction, of the rock.

A major advantage of the deformation theory description adopted here is ease of computation.
The formulation is done in such a way that an iterative procedure can be set up with a linear elastic
finite element program.

3.1.2 Plasticity Theories

A detailed description of plasticity theory will not be given here. The reader is referred to text
books such as Hill [8] or Kachanov [9]. What is of concern is the difference between the so-called
incremental theories of plasticity and the deformation theories. The discussion will be in terms of the
reduction of tractions on the boundary of an excavation in a rock, rather than the application of
load to a finite body as occurs in laboratory tests or in many civil and mechanical engineering
applications where structures are made above ground. Before the excavation takes place, tractions
on the excavation boundary are in equilibrium with the in situ stresses in the rock, and they must be
reduced to zero for an unsupported opening or to some nonzero values which represent the support
loads. If the material is linear elastic, it is well known that the final state of stress is obtained by the
solution to the boundary value problem in which the support pressure is applied to the opening
boundary and the tractions resulting from the in situ stresses are applied to a boundary far away
from the opening. The boundary value problem for the displacements induced by the excavation is
described in detail in Section 3.2.1.

The essential difference between the two plasticity theories is as follows. The deformation theory
of plasticity, originally due to Hencky [10], uses the same boundary conditions as the linear elastic
problem to be described in Section 3.2.1. However, the stresses are constrained to satisfy a yield
criterion (usually Mohr-Coulomb or Hoek-Brown for geomechanics applications). Where the
material has yielded, (i.e. this criterion has been violated at some stage of the solution process), the
strains are related to the stresses by a constitutive equation which is no longer the linear elastic
Hooke’s law. This constitutive equation, however, like Hooke’s law, does relate the final induced
strains to the difference between the final stresses and the initial stresses. In its simplest form, the
deformation theory describes a linear elastic inhomogeneous material, because the secant modulus
of elasticity varies from point to point in the medium.

In contrast, in the incremental theories, the boundary tractions are reduced in increments until the
material adjacent to the opening yields. Further increments of stress occasioned by further reduc-
tions in traction are distributed to neighboring elements which may yield in turn. The constitutive
equations in yielded elements relate the increment of strain to the increment of stress.

In summary, the incremental theories attempt to follow the path of loading and unloading in an
element of material, whereas the deformation theories describe only the final state of the material. In
cases of complicated loading paths (including any unloading) the resulting state is known to be path
dependent and the deformation theories are inapplicable. For this reason, the deformation theories
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were discredited in the 1950s. However, Sanders [11] proved that the incremental theory is
integrable, for linear yield surfaces. Budiansky [12] showed further that, for some restricted loading
paths (not too far from proportional loading), the incremental theories are in effect integrable and
give identical results to the corresponding deformation theory. Thus, in the absence of strain-
softening, for a single unsupported excavation in a homogeneous medium where the stresses are
limited by a Mohr—Coulomb criterion and the plastic strains obey an associated flow law, the
deformation theory gives the same resuits as the incremental theory. This fact is not widely known in
the geomechanics community.

For a Mohr-Coulomb failure criterion, this result has been confirmed for circular excavations
under nonaxisymmetric in situ stresses, if the obliquity (defined below) of these stresses is not too
great [13]. The flow rule does not need to be an associated one. In this chapter we demonstrate
Sanders’ theorem numerically, by showing that, for circular excavations in plane strain conditions,
the departure from axisymmetry can be greater yet and again the flow rule does not need to be
associated. We also give a similar example with strain-softening, where the incremental theory and
the deformation theory give virtually identical results.

There are instances of deformation theory applied to geomechanics problems recently in the
literature, see refs. 2 and 14.

In many instances of underground excavation there is very little of the complicated sequence of
loading and unloading which makes the use of incremental theory mandatory. Moreover, even
though we may simulate the path of excavation unloading as convincingly as we can, it is not clear
that the path we choose, mathematically, is actually the path that elements of the material follow!
When a continuous miner cuts a roadway in coal it is reasonable to assume that a couple of roadway
diameters from the face end we have plane strain conditions. To say that the traction on the roadway
perimeter has reduced smoothly from its original in situ value to zero in small steps of equal
magnitude (in plane strain) is not necessarily an accurate description of the complicated three-
dimensional effects as the face advances. Thus the results of a deformation theory analysis may
reflect the true situation just as adequately as an incremental theory analysis.

32 DEFORMATION THEORY OF PLASTICITY

As with the incremental theory of plasticity, the deformation theory splits the infinitesimal strain
tensor ¢;; into an elastic part &f; and a plastic part -

The elastic part of the strain tensor is related to the Cauchy stress tensor o;; by the usual
generalized linear Hooke’s law as follows

Eafj =1+ V)Uij - vo'kk(sij (1)

Here E is the modulus of elasticity and v the Poisson’s ratio of the medium. Note that v is constant
throughout the analysis.
The plastic part of the strain tensor is split into deviatoric ef; and volumetric &k parts

e = e + (e0/3)dy; )]

ij
The deformation theory constitutive relations for plastic strain are taken in the form
E*ef, = (L+v)s; 3)
and .
gy = DGP) 4
where the stress deviator s;; is defined by
55 = 05— (o/3)dy; 5)

and \yhere E* is a function of the invariants of o;;, y°, the total plastic strain, is defined below in
equation (16) and D(®) is a function of y? yet to be defined. (For example the so-called J,
deformation theory assumes that E */(1 + v) = 2G* is a function of the second invariant J, = s;;5;;/2
only and that D = 0.) For more details on the deformation theory the reader is referred to textbooks
such as Kachanov [9].
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We note that the analysis in this chapter will be confined to small displacements and small strains,
so that the strains arise from displacements according to the linear strain—displacement relations

&; = (W ; + ;)2 (6)

In Section 3.2.1 the boundary value problem will be described that simulates the formation of an
excavation in rock. The discussion will be restricted to two-dimensional plane strain problems. Then
in Section 3.2.2 the deformation theory constitutive equations for plane strain are written out in
cartesian components. Because these constitutive equations are not in a convenient form for
computation, they are recast so that they describe a linear elastic inhomogeneous medium with
varying secant modulus subject to a ‘pseudo’ in situ stress field (which will be defined) which also
varies in the medium. It then becomes a simple matter to set up an iterative procedure with a linear
elastic finite element program to produce a solution.

In what follows we put x; = x, X, =y and x3 = 2, 013 = 0Oy, 012 = Oxy, 022 = 0, €IC. Einstein’s
summation convention (i, j = 1, 2) is implied by a repeated index and ; = 8/0x;.

321 Definition of the Excavation Unloading Plane Strain Boundary Value Problem of
Geomechanics

Consider an ‘infinite medium’ subjected to in situ stresses 62,09 and 62, in the x, y plane and with
zero strain, ¢,, normal to the plane. If a single excavation of any constant shape is made parallel to
the z direction (a tunnel or borehole), the stresses around the excavation will be modified and
displacements and strains will be induced there.

This procedure is modeled mathematically by reducing the normal and tangential tractions on the
boundary of the excavation from their in situ values to values appropriate to any support there or to
sero. In the incremental theories of plasticity, these tractions will be reduced gradually (in incre-
ments) until the rock around the opening yields. The process will be continued with stress
redistribution taking place in and around the yielded rock until the final boundary values are
reached. For the deformation theory of plasticity the boundary value problem is not solved in
increments but the final values are applied at once. However, an iterative process is required to
ensure that the deformation theory constitutive equations are satisfied.

The unusual feature of the geomechanics ‘excavation unloading’ boundary value problem is
apparent when we discuss the appropriate boundary conditions.

Suppose that S is the closed curve that is the boundary of the excavation, n; are the direction
cosines of the normal to S and T are tractions on S arising from supports.

If the finite element method is to be used to solve a problem, an outer boundary S, must be
introduced far from the excavation. The solution to the problem must satisfy the conditions that
o, n; = T;onS as well as g;; > o}; and the displacements 4; = 0 as the field point x; — a point on S,.

The solution cannot be obtained by simply applying boundary conditions a;; = oy on S, and
oyn; = T; on S, for clearly this will induce displacements on So. This boundary value problem is
termed the ‘outer boundary loading problem’ and is still widely used in geomechanics.

To get a solution where the displacements and induced strains arise only from the introduction of
the excavation, we solve for stresses Ag;; = 0;; — of; which satisfy the following boundary conditions:
(@) Aoyn; = —adn; + T;on §; and (i) Aoy;n; = 0 (so that u; &~ 0) on S or u; = 0 (so that Ao;;n; = 0)
on So.

The stresses, Ao;;, must satisfy the equilibrium equations

Ao;; +fi =0 ™

(where f; are body forces), and the constitutive equations (1), (3) and (4) with o, (oi) replaced by
Aoy, (Aow). .

The final stresses o;; are obtained from the solution stresses Ag;; by adding the in situ stresses 0‘8;. It
is clear that o;; approach the in situ stresses o¥, far away from the excavation and satisfy the support
conditions around the excavation. It is these final stresses oy; that are to be constrained to satisfy the

yield condition described below.
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Numerical Modeling of Yield Zones in Weak Rock 53
3.2.2 Definition of Secant Modulus for Plane Strain

For plane strain (& = &% = 0), the elastic stress-strain relations are

1+v

&£ = E [(1 — v)Ao, — vAg,] (8a)
. 1+v

g = 5 [(1 — v)As, — vAa,] < (8b)
1+v

g = A, (®9)

In two dimensions the deviatoric parts of the stress and plastic strain tensor are defined as

e = ef + (8x/2)dy; )]
s; = 0y — (04 [2)6y (10)
so that
s = (0: — 6,)/2 (1)
sy, = —(0:—0,)2 (11b)

Then the full stress-strain relations for the deformation theory in cartesian coordinates x and y,
using equations (8), (3) and (4), are as follows

= g€ P
&, = & + &

1+v 1+v 5 o\
=z [(1 — v)Ac, — vAa,] + —E—;(a, — ;)2 + D(yP)/ (12a)
g = &5+ &
1+v 1+v
=5 [ — v)As, — vAs,] — Tl (o, — 0,)/2 + D(y°)/2 (12b)
by = &y T &
1+v 1+v

(12¢)

'_E_ » t E* Oxy

The above equations are not in a convenient form for computation. Noting, powev‘er, that finite
element software easily calculates nodal forces corresponding to nonuniform initial or in situ stresses
in elements with different values of modulus of elasticity, we seek to recast the constitutive equations

(12a—) in the following form

1+v

= g [(1 = VA0, — vA;0,] (13a)

1+
oy = 2 Y[ = VA0, — vB0.] (13b)

) 1+
Eyy T E vAlaxy (130)

where

N

Ao = 045 — }‘(i.i)agi (14)
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(where (ij) denotes that i, j are not summed). Equations (12a—) and (13a—) are identical provided

1)E, = 1JE + 1/E* \ (15a)
360 = (EJE)02 + (1 — EJE)(0x + 0,)2 — EDGP)/[2(1 + v)(1 — 2v)] (15b)
1,6° = (EJE)e® + (1 - EJE)(o; + 6,)/2— EDOP)/[2(1 + %1 — 2v)] (15¢0)
Jxy09 = (E,/E)cS, (15d)

y?, the total plastic strain, is given by
PP o= & — ] = [(8 — &) + 45,]"? . (16)

where &8, &} are respectively the major and minor principal plastic strains. Note that y? is often
defined as a half of the above. Similarly, the shear stress 1 is given by

T = (03 — 03)2 = [0 — 0,)%/4 + 03,1 (7

where a,, 64 are respectively the major and minor principal stresses. Then, using equations (3), (10)
and (11) with equation (15a) we have

= 2(1 + W(1/E*)t = 2(1 + W(/E, — 1/E)t (18)

Equations (13a—c) describe a linear elastic inhomogeneous medium with varying secant modulus
E, and subject to a pseudo in situ stress field 4,02, 4,09 and A, 02, which also varies in the medium.

3.2.3 Mohr—Coulomb Failure Criterion

We postulate that the rock obeys a Mohr-Coulomb failure criterion
gy = ko3 + 0. (19)

where o, and ¢ are respectively the major and minor principal stresses in the x, y plane, o is the
unconfined compressive strength of the rock and k (triaxial strength) is related to the angle of
internal friction (¢) of the rock

k = (1 + sing)(1 —sing) (20)
The cohesion ¢ of the rock is related to o, and ¢ by the following
¢ = atan@/(k — 1) (21)

It is assumed that the stress in the z direction is a principal stress and is intermediate in value
between o, and a3. It is further assumed that o3 is limited by a maximum value for tension.

3.24 Strain-softening

For many geological materials, the effective cohesion or unconfined compressive strength is much
less after yield has occurred. The crudest way to account for this is simply to reduce the cohesion in
the yield zone to a constant value. Naturally, a continuous drop in cohesion from pre- to post-failure
is preferred and several ways of doing this have been proposed (see Brown et al. [15] for a review).
Normally, the cohesion reduction is given as a function of y?, the total plastic strain (equation 16).

The following expression has been adopted to fit the framework of the deformation theory
constitutive equations described here. If o/, is the limiting value of unconfined compressive strength
in the yield zone as E, — 0, we replace equation (19) in yielded elements by

6, = koy + o¥ 22}
where

o} = o, = [1 = (E/E)](o: — 00) (23)
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for some constant «. Note that this gives a smooth variation of ¢ from o, on the yield-elastic zone
interface (where E; = E), to o, as E,— 0.

3.2.5 Application to Finite Element Calculations and Determination of Secant Modulus

In what follows the plastic region will normally be termed the yield zone.

For finite element calculations equations (13a—c) allow an iterative procedure to be set up where
each iteration is a linear elastic analysis with: (i) the modulus of elasticity in each element of the
plastic region equal to the current estimate of the secant modulus in that element (the Poisson’s
ratio, v, is assumed to be constant for each iteration); and (ii) the nodal forces calculated from the
pseudo in situ stress field 4,02, A,ag and ,,09%,, which also depend on the current secant modulus
and the current stress state.

The first iteration is a linear elastic analysis with the original measured or inferred Young's
modulus in the different strata around the excavation and the full in situ stress unloaded at the
excavation boundary (i.e. all the A;; = 1). Each finite element is then tested to see whether the stress in
that element predicted by the analysis violates the Mohr-Coulomb failure criterion postulated for
that material. If this criterion is violated, the element is flagged as ‘yielded’, and the secant modulus
for the element for the next iteration is obtained by multiplying the appropriate Young’s modulus by
a reduction factor, F,,, defined below. The factors 4,, 4, and A, are then computed for this secant
modulus using the stress state from this iteration. Nodal forces are calculated as described in (ii)
above and a new iteration performed. The procedure is continued for each iteration until the
reduction factors, F., are close enough to unity (usually within 1%).

The reduction factors are obtained from the following analysis.

From equations (13a—c) and using equations (14) and (15), we derive

1+
=8 = v[a, — 0, — (4,02 — 4,09)] (24a)
1 +v
= 3 [0, — 0, — (EJ/E)(03 — d3)] (24b)
1+v 1 +v
= E. (0x — 0y) — —E‘(Ug — ay) (240

If E, is the modulus of elasticity estimate for the ith iteration then the stresses computed at the end of
the ith iteration satisfy

0. — a0, = [E/J(1 + v][(ex + &2) — (&, + )]
0 = [E/(1 + 91y + ) (25)
where we have defined
1
@ = ——al (262)
1+
g = (26b)
1+
g = —— 0 (26¢)

Thus the shear stress © (equation 17) satisfies

T = 70E/[2(1 + V)] @7
where
vh = [ + &2) — (6 + &)1 + ey + &3,)° (28)
o, is supposed to satisfy the postfailure yield criterion, equation (22). Thus

[(k — Dos + 6712 (29)

Trequired — [(ol - 03)/2]required =
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Referring to equation (27), let us choose E;+; to satisfy coord

El’+1 = 2(1 + v)rrequired/())io)

= Trequired/[tcompuled/Ei]

= E[(k — Dos + d¥)/[6y — 03] (30) Ifre is
elastic
Hence
E;.y = FuE; (31
where
Fu = [(k — Vo3 + a¥]/[6: — 03] (32
The reduction factor F,, is the same as that used previously by Kripakov and Melvin [16] and
Duncan Fama [17] to reduce the modulus of elasticity in yielded regions. (The term reduction factor and tt

is preferred rather than factor of safety, in case of confusion with a design factor of safety.) The
iterative procedure has been found to converge extremely well for many problems. Oscillations may
occur, but the procedure can be tuned when this happens (e.g. by using F&/? instead of F, in
equation 31). The calculation of the nodal forces from a pseudo in situ stress field for excavation
unloading is believed to be new.

The procedure is implemented in a two-dimensional plane strain finite element program,
FESOFT (© CSIRO).

where

33 AXISYMMETRIC PROBLEMS

For axisymmetric plane strain problems (circular tunnels or boreholes), the incremental theories Conti
of plasticity are always integrable because the loading path is proportional. Thus a deformation expre:
theory gives the same answer as an incremental theory provided unloading does not occur.

In this section some useful results for axisymmetric plane strain strain-softening problems are
derived. Firstly, in Section 3.3.1 the well-known ideal plasticity solution for the stresses is presented
and equation (46) for A relevant to axisymmetry is given.

Although equation (46) looks unpleasant, the stress-strain equations (40a—c) can be solved
analytically, both for the case of ideal plasticity, and also for the case where the failure properties are
reduced to a constant in the yield zone. See, for example, Brown et al. [15] for a review of where such
solutions are to be found. These authors also gave a solution appropriate to the Hoek-Brown failure
criterion (assuming a constant elastic strain in the yield zone). The analytical solutions for displace-
ments, total plastic strain and secant modulus for the ideal plasticity case are presented in Section 332
3.3.3.1. In Section 3.3.3.2, a solution for the Mohr—Coulomb failure criterion, with a constant The
reduced cohesion in the yield zone, is presented. The latter is a simplification of the deformation
theory solution. In Section 3.3.3.3, postulating that cohesion softening is proportional to confine-
ment, allows an analytical solution for both stresses and displacements to be obtained from the ideal
plasticity solution. Finally, in Section 3.3.3.4 an approximate expression for 4 allows a particularly
simple analytical solution for the displacements to be obtained.

33.1 Mohr-Coulomb Yield Zone Stresses and

For a circular tunnel (or borehole) in homogeneous isotropic rock under hydrostatic pressure, po,
the in situ stresses are given by 6% = 67 = po with 0%, = 0. Defining polar coordinates r, @ in the
usual way, if r; is the radius of the circular excavation, and p; < P the (support) pressure there, then The ¢
the stresses in the elastic region have g > o, everywhere. Thus the major principal stress o, is 0, Criter
and the minor principal stress is o,. The Mohr—Coulomb failure criterion (equation 19) becomes

| g = ko, + o (33)
) ; S0 th;
which is linear in the stresses, and it is well known that the stresses in the yield zone are now

statically determined by this equation in combination with the usual equilibrium equation in polar or
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coordinates

do,
dr

= (gg — a,)/r (34)

If r. is the radius and p, the normal stress at the yield—elastic zone interface, then the stresses in the
elastic region r > r, are

r. |?
6, = po—(Po — P.) [7] (35a)
r. |2
69 = po + (Po — P.) [;} (35b)
G = 0 (35¢)

and the stresses in the yield zone r < r, are

r k-1
o, = (p+ 9 [r—] -5 (36a)
FE-1 . ’
os = k(pi + 9) [:] - (36b)
6y =0 (36¢)
where

= 37

S = Y_1 (37)

Continuity of the radial and tangential stress at the yield—elastic interface leads to the following
expressions for r, and p,

2 1k~ 1)
Te _ (Po + 9) ] 38)
ri *k + D(p: + 9
2p0 — O
Pe = 1 (39)
33.2 Deformation Theory Constitutive Relations for Axisymmetry
The stress—strain relations in the yield zone, equations (13a—c) with 4, = 4, = 4, become
1 + '
s = —— L = (e, = Ipo) = v(es = 4po)] (40a)
1+
o = ——[(L = V(0 — 4po) = ¥(g, — ipo)] (40b)
and
ipy = (E,/E)ps + (1 — E,/E)(0, + 06)/2 — E.D(®)/[2(1 + v)(1 - 2v)] 1)

The conventional flow rule of geomechanics used in conjunction with a Mohr-Coulomb failure
Cniterion is recovered when

DGP) = —sing*yP | 42)
so that &, = —sing*y® (43)
or k*e? + ¢ = 0 44
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where ¢* is the (constant) dilatancy angle and k* = (1 + sin@*)/(1 — sin ¢*). (Note that ¢* = ¢
implies an associated flow rule or normality.) Substituting the expression for y? from equation (18) in
equation (42) implies

D(*) = —2(1 + vW(1/E, — 1/E)sin ¢*1 45)
and equation (41) becomes

ipo = (E,/E)po + (1 — E,/E)(0, + 0o)/2 + (1 — E,/E)[sin¢*/(1 — 2v)1(0s — 0,)/2 (46)

3.3.3 Analytical Solutions for Displacements
3.3.3.1 No strain-softening

For completeness the solution for the displacements resulting from the excavation unloading
problem when there is no strain-softening is recorded here

E u_ (1-2v+ sin¢sin¢*( . )[(:)k-l _ <E>k—1<2>kt_l]
1+vr 1 —singsing* pits r " "

20k — vk + 1 AL
—(pﬁs)[‘—%ﬁ(';) —(1—2v)] @)

where, for simplicity, the expressions sin ¢ and sin ¢* as well as k and k* have been used (see
equations 20 and 44). This is similar to solutions to be found in the literature, e.g. Florence and
Schwer [19], where the solution is for k* = k and for outer boundary loading.

Corresponding to the above displacements the expression for the total plastic strain (equation 16) is

£ S0t (1 (1)) "
1+ 1 — sin ¢sin ¢* r re

and for the secant modulus

i
5 _ 1 — singsing @9)
E r. k +k* . .
21 — v (~—> — singsing* — (1 — 2v)
r
For a dilatancy angle of zero, the expressions become
{5_- - 1 (50)

k+1
E - v)(fri) -1 =29

2 k-1
E o = 401 — vsing(po + 9 [('—) _ (1> ] (51)
1+ r T,

E, .. . .
Clearly, equations (48) and (49) allow y® to be expressed in terms of E’f Similarly, equations (50) and
(51) lead to

1 — =
. iy (e 1-F)
T v'y" = 2sin¢p(pg + 9) — % TEN6TD (52)
2 =
1+ ( v) E (E)

This equation is not easy to invert, but shows that the strain-softening equation originally post-
ulated (equation 23) is quite consistent with the more conventional expressions where postfailure
cohesion varies with total plastic strain, y®.

Equations (47)—(51) were derived by Craig [20].

33.3.

pPr
(18]
ton .

Th

with .

With

prefa:
I, anc
in st

siIve st
the v



t¢*=¢
on (18)in
(45)

(46)

unloading

@7

1 used (see
rence and

ation 16) is

(48)

(49)

(30)

(1)

ons (50) and

(52)

sinally post-
2 postfailure

A B A i o 135 0 s P A A A S N L st .~ ;

¢ e RS i A AR

34 i 3

&
:
3

Numerical Modeling of Yield Zones in Weak Rock 59
3.3.3.2 Simplest approximation for strain-softening

Prior to the development of the deformation theory formulation presented above, Duncan Fama
[18] presented an analytical solution for the strains, displacements and also the modulus distribu-
tion E, as a function of r. This model is equivalent to equations (40a—c) with a simplified A.

The stress—strain relations were

1 +v

g = ?'(;)‘[(1 — v + B)o, — (B + v)ge] (53a)
1 4+v

g = E0) (1 —v — B)oy + (B — V)0, ] (53b)

with a constant dilatancy parameter f defined by

g = —(B/E,)c (54)

With E,(r) replaced by a constant E, these relations were proposed by Pender et al. [21] to model
prefailure dilatancy. This relation is recovered from equation (45) by neglecting E,/E compared with
1, and setting B proportional to sin ¢*. All other contributions to 4 are ignored, so that the pseudo
in situ stress arises only from this simplified dilatancy term. ‘

The simplest form of strain-softening was adopted with a constant reduced unconfined compres-
sive strength ¢¥ = ¢, but no change in angle of internal friction in the yield zone. Then the stresses in
the yield zone are given by equations (36a—c) with s replaced by

§ = (55)

The solution for the displacements as well as the modulus distribution was obtained in closed form

r k-1 k-1
(_ —h
1 +v r;

u
Pl ——E—(Po = Pe) (n)"“ (56)
=) —h
T
with
u r\ !
E- = —(1 + vl — 2v)[<r—) - h] s/h 57
r i
with the parameters b and h given by
1—v+ 8-+ Bk :
O TV B (58a)
h 4= 297 (58b)

T =y =Bk + B —vp + )

An analytical solution was also obtained for the nonlinear Hoek-Brown failure criterion on the
stresses.

3.3.3.3  Analytical solution for a smooth cohesion reduction in the yield zone

We replace the discontinuous drop of unconfined compressive strength from o, (prefailure) to
o? in the yield zone by a continuous reduction as follows. ‘

Postulating a dependence on minor principal stress or confinement, suppose that we replace
€quation (23) with

o* = yo3 + d, (59)
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for some y chosen so that o¥(r.) = o.. Here o is the limiting value of unconfined compressive
strength for zero confinement. This implies that
. — O, )
X = (60)
Pe

Thus the postfailure yield criterion, instead of equation (22), becomes
oy = (k+ y)o, + o {61)

so that in the yield zone we have an apparently higher friction angle, but a smaller cohesion. Note
that p. (equation 39) and hence y depend on p, as well as o, and ¢, and this is less suitable than
a strain measure. In fact the pre- and post-failure curves are bilinear, meeting at the point
represented by the yield—elastic interface for the problem. In Figure 1 the continuous line shows the
prefailure and the dashed line the postfailure criteria relevant to the parameters of problem 2 of
Section 3.4.

It is clear that the solutions already derived in Sections 3.3.1 and 3.3.3.2 are immediately
applicable to this postfailure curve. In fact the solution for a prefailure yield criterion given by
equation (33) together with a postfailure yield criterion given by equation (61) is identical to that for
both pre- and post-failure yield criteria given by equation (61). (The continuation of the postfailure
line is shown as a dotted line in Figure 1.) k + x replaces k and o. replaces o, everywhere in the
expressions for the solution. (It is easy to verify, for instance, that replacing 6. by 6. and k by k + yin
equation 39 for p,. leaves the expression unchanged, and also that no stress points in the elastic
region (a3 > p.) lie between the continuous and the dotted lines in Figure 1).

This means that the solution for the displacements in equation (47) is valid and thus an analytical
solution is available for a strain-softening problem (with an arbitrary dilatancy angle).

It is interesting to examine the somewhat unconventional strain-softening equation (59) and
determine the variation of unconfined compressive strength with total plastic strain. The results of
this model can then be compared with results obtained when the strain-softening is controlled by
this variation (e.g. FLAC [23] or FESOFT [22], which has both options). Section 3.4 describes these
codes in detail. For simplicity, using the case where there is zero dilatancy, replacing k by k + x as
well as o, by o,, we note first that equations (36a—c) with equation (38) implies that

2(po +5) [T\ y (62)
" k+yx+1\r '
where
$ = +‘;=_ 1 (63)
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Figure 3 Cohesion against total plastic strain

Substituting for (r/r.) in equation (51) gives the following relationship between y, and o,

k+x+1
k + x + Do, + s'))-k—‘u—x 1]
2{po + )

1 +v ©

¥ =(10-=-wWk+yx— Do +5) |:<

We could substitute for g, = o3 from equation (59), which gives y? in terms of ¢¥. This is not
readily invertable to yield a closed form expression for o¥ in terms of y*. However, it is not difficult to
solve equation (64) and equation (59) numerically. Figure 2 shows the variation of cohesion across
the yield zone and Figure 3 shows the variation with total plastic strain. These are for the parameters
of problem 2 (see Table 4) below.

The continuous curve (labeled Analytic y) is obtained by using equation (59) and the dotted curve
(labeled FESOFT E,/E) is obtained by using equation (23) with « = 1. For comparison purposes,
th]e dashed curve (labeled FESOFT exp y®) is obtained with a more conventional strain-softening
relation

ot = 0. — (1 — exp )0, — a) (63)

with 8 = 1/400. The latter two give nearly identical results — the analytical solution is clearly a useful
alternative, without the flexibility of either equation (23) or of equation (65), where x or § can be
varied to give a fast or a slow decay of ¢¥ from its initial to its final value. In fact for § = 1/200 the
analytical solution is nearly identical to the numerical solution obtained using equation (65).

Note that equation (64) which relates y* and ¢, also yields an analytical relationship between shear
strain and shear stress. The form of the shear stress versus shear strain curves resulting from the
strain-softening assumptions of each model is shown in Figure 4.
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Figure 4 Shear stress against shear strain

There are obvious difficulties in extending equation (61) to nonaxisymmetric problems, because it
is not clear what value to take for p. in equation (60). However, equations (59) and (60), with
a suitable estimate of p., were used successfully in a study of coal mine chain pillar stability (Duncan
Fama and Wardle [17]).

3.3.3.4 Approximation for A in deformation theory

The displacements and strains given in Section 3.3.3.1 are relatively complicated, but a good
approximation for A can be used to obtain a very simple analytical solution. Replacing equation
(41) by

ipo = (6, + 04)/2 (66)

can be expected to give a reasonable approximation. For, referring to equation (46), we note that for
the two limiting cases: (i) E, ~ E, (i.e. near the yield—elastic zone interface) 1 ~ 1 as we would expect.
Since (0, + 65)/2 = po in the elastic region, (o, + 75)/(2po) ~ 1 also; and (ii) E; < E (i.e. near the
opening), A is of the order of (o, + 6)/(2po) provided E,/E is of this order or smaller.

This approximation is useful because it allows a very simple analytical solution to be obtained
with a nonzero pseudo in situ stress field.

An interesting feature of this choice of A is that Ap, is exactly that level of in situ hydrostatic stress
at which the elastic stresses at the point r lie on the yield surface. For, in that case

r k+x-1
o, = Apo(1 — A/r?) = (pi + S’)(;) -5 (673)
r k+x-1
op = Apo(l + A/r?) = (k + (p: + S')(;) - (67b)
oo =0 (67¢)

for some constant A, and these equations express the fact that the stresses at the point r satisfy the
yield criterion and also the elastic solution for an in situ stress in the far-field of Ap.

In the incremental theory of plasticity, the loading would be applied in increments until precisely
this level is reached. Further increments of load are, in fact, ‘removed’ and must be carried by
neighboring elements.

Note that in the incremental plasticity theories the element would continue to strain in this
process — in the technique described here this is also true to the extent that as more elements fail the
modulus of each element drops further to keep the stresses on the yield surface. This is done
iteratively not incrementally. The process has been described in detail in Section 3.2.5.
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The stress—strain relations in the yield zone simplify to

1 +v
& = — 3E [os — o] (68a)
1+v
g = + IE, [os — 0,] (68b)
E9 = O, = 0 (680)

Since the right hand sides of these equations are proportional to the components of s; in polar
coordinates, equations (68a—c) are just equation (3) with E* replaced by E, and &f; replaced by ;.
Thus this choice of A is equivalent to neglecting the elastic strains & and &5 in the yield zone in
comparison to the plastic strains and also setting

g, =Dy =0 (69)

Equations (68a-c) (with E, replaced by E} are also valid in the elastic zone (refer to equations
(30a—c)) with E; = E and A = 1 and replace po by (d, + 0¢)/2). Thus

& + & = 0 (70)

throughout the medium.

Since ¢, = du/dr and ¢y = u/r (where u is the displacement in the medium), equation (70) implies
that du/dr + u/r = 0 with solution u = C/r everywhere. Here C is a constant which is to be
determined from the boundary and interface conditions.

u,, the displacement at r., is obtained from equation (68b) (with E, = E), using equations (35a—c)
for the stresses in the elastic region. Thus

_ 2
u = u.r, = _(1 + V) (Po pe)re (71)
r E r

(with p, given by equation 39) where we have used the expressions for the stresses in the elastic zone
together with the stress—strain relations to obtain u,.

Although the form u = C/r of the displacement solution is exactly the same as for the linear elastic
solution, we note that the displacement at the opening surface r = r; is substantially greater as the
vield zone width increases. With no yield and no support pressure at r = r;, equation (71) with p. = 0
and r, = r; gives

1 + v por!
- — LAMLS 2
. E r 72

When the parameters are those of example 2 of Brown et al. [15] and Duncan Fama [18], namely
r;=535m, p,=2331MPa, p,=0, E=138GPa, v=025, k=4, ¢.=24MPa and
. = 0.024 MPa, the computed values of u, and u; (the displacement at r;), for the two solutions are
u, = 7mm and u; = 16 mm for the elastic solution, and u, = 30 mm and u; = 75 mm for the elastic
plastic solution. Here ¢, was chosen to match the yield zone width to that of Brown et al. [15] with
postfailure defined by equation (61). The value of u; computed for the elastic plastic solution for this
model is virtually identical to that computed numerically by Brown et al. with a small value for their
dilatancy parameter.

3.4 PLANE STRAIN PROBLEMS FOR CIRCULAR EXCAVATIONS

oWc: consider first a circular excavation under an in situ stress 62 = po + So and 62 = po — S, and
0z, = 0 which is not hydrostatic. Detournay [13] defined an obliquity

_ s k—l( g, :I 73)
"= °/[k+1p°+k—l) (

and studied problems for which m < 0.3. Here the yield zone completely surrounds the excavation
and the stresses in the yield zone are statically determined and identical to those in the axisymmetric
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case. The deformation theory is again valid and the numerical results are identical to Detournay’s
analytical results [13].

A series of comparison runs were done on circular excavation problems with the two-dimensional
finite element code FESOFT [22] using the deformation theory of plasticity described above and
with the two-dimensional finite difference code, FLAC [23], which uses the incremental theory of
plasticity and allows strain-softening. The results are tabled below together with results from
Detournay’s program KINEDI {13] which also uses incremental theory.

A circular excavation with radius 1 m was analyzed. The radial nodes for both the finite element
(FESOFT) and the finite difference mesh (FLAC) were at 0.1 m intervals from 1 m to 3 m, at 0.25m
intervals to 5m, then 1 m intervals to 8 m, then 2 m (2), 3m and 5 m (3) intervals to the outer
boundary of 30 m (38 nodes on each spoke). The quadrant x > 0, y > 0 was divided into 20 equal
spokes (see Figure 6).

Two problems were analyzed, one ideal plastic and one with strain-softening. The parameters
were chosen so that both had a yield zone width of approximately one radius for axisymmetric in situ
stresses. It can be seen from the results that the solutions are very similar in both cases.

The following parameters were common to both problems: po = 1 MPa; p; =0; E = 1 GPa;
v =0.3; k = 3.0; and k* = 2.0. For problem 1 (ideal plastic) the cohesion, ¢, and postfailure cohesion
c* were given by ¢ = ¢* = 0.092, so that ¢, = 0¥ = 0.32.

Table 1 compares displacements at the x and y axis excavation boundary for problem 1, for the
three programs for m = 0 (axisymmetric) and m = 0.3. FESOFT and FLAC results only are
compared for the ratios of in situ stress ¢2/6 = 0.5 and 0.4, where (62 + 6?)/2 = po = 1 MPa.

For problem 2, ¢ = 0.15 MPa and ¢’ = 0.075 MPa. The strain-softening relation used in FESOFT
is as given in equation (23) with « = 1, and the relation used for FLAC was fitted to the scatter plot
obtained from the FESOFT results as shown in Figure 5. (Note that the FLAC y? is one-half of
our )

Table 2 compares displacements at the x and y axis excavation boundary for the strain-softening
problems for the same four in situ stress ratios as above.

A more detailed comparison of the results of FESOFT and FLAC for the strain-softening case
where 62/¢9 = 0.4 is shown in Figures 6-10. The agreement is remarkable, particularly in view of the
difference in the strain-softening models. The FLAC?2 results agree better than FLAC1 which looks
like a better fit to the scatter plot. However, the slower decay in FESOFT to the final cohesion values
is important and the results show that the y? values for FLAC2 are more comparable with the
FESOFT values, particularly in the region of greatest yield.

Figure 6 shows the deformed mesh and the yield zones resulting from the two analyses. The
intensity of yield is measured in FLAC by the total plastic strain, whereas in FESOFT it is reflected
in the ratio of the secant modulus E, (equations 13a-c) to the modulus, E, of the intact material. The
few edge elements that yielded in the FLAC analysis but not in the FESOFT analysis are shown. The
total plastic strain in these elements was in all cases less than 1% of its value near the opening
boundary on the x axis. The ranges of E,/E are shown in the legend to the figure. In fact, half the
elements in the inner ring had a secant modulus E, which was only 1% of E. The modulus reduction
for the ideal plasticity analysis was similar.

Figure 7 shows the displacements around one quadrant of the opening boundary, and Figure 8
shows the corresponding major and minor stresses there.

Figures 9 and 10 show the major and minor stresses on the x and y axes from the far-field (at
radius 30 m) at left to the opening boundary (radius 1 m) at right, respectively.

The number of iterations for FESOFT is normally taken so that the minimum value of F, (see
equation 32) in any element is at least 0.99. For the size of yield zone in the ideal plasticity problems
above this required about 235 iterations. The strain-softening problems required 35. The minimum
F,, was 0.999 when the iterations were increased to 42 (ideal plasticity) or 60 (strain-softening). The

Table 1 Normal Displacements (mm) at Excavation Boundary on the Axes for Problem 1

a2/o8 m KINEDI FLAC FESOFT
x axis y axis X axis y axis x axis y axis
1.0 0.0 54 5.4 5.3 53 53 53
0.705 03 7.6 39 1.5 4.6 7.5 40
0.5 0.57 10.5 5.5 10.2 4.1

04 0.74 13.2 6.4 12.8 4.8
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Table 2 Normal Displacements (mm}) at Excavation Boundary on the Axes for Problem 2 -

o9 oy FLAC! FLAC2 FESOFT
X axis y axis X axis y axis X axis v axis
1.0 1.0 55 55 4.8 4.8 57 57
0.83 1.17 70 34 7.8 32 84 37
1.33 0.67 129 4.2 119 40 114 3.9
143 0.57 16.0 57 14.9 4.8 14.3 4.6

e

/7 /
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Figure 6 Yield zone for o)/o) = 0.4 with strain-softening
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cpu time also depends on the size of the yield zone. It is not possible, at present, to compare run times
of FESOFT and FLAC on the same hardware. The cpu time for the FESOFT strain-softening rup
(with 60 iterations) on a SUN 3/110 workstation was 1 h, and on a CONVEX 120 was 150s.

It is important to note that, for a coarse mesh, the iterative procedure will underestimate the yiel

zone width, the modulus reduction and hence the opening displacement. For problem 1 abové,

Element number along X axis {(from outer boundary)

&
¥

Figure9 Major and minor stresses along X axis
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Figure 10 Major and minor stresses along y axis

Table 3 Opening Displacement and Average Moduli for Three Different Meshes

Average Average
Mesh Displacement modulus (inner) modulus (outer)
1 0.33 127 449
2 0.31 137 491
3 0.26 185 730

Table 3 shows the results for the axisymmetric solution with k* = 1 for three different meshes. Mesh
1 is the mesh shown in Figure 6 and has the yield zone divided into nine rings. Mesh 2 and mesh
3 have respectively four and two rings in the yield zone. The displacement tabled is at the opening,
and the modulus is averaged over the two rings which constitute the yield zone for mesh 3. Note that
a one-ring mesh cannot be used as the elastic stress at the midpoint does not violate the yield
criterion.

The results in this section confirm the validity of the use of deformation theory for circular
2xcavations with the Mohr—Coulomb yield criterion, even with some strain-softening.

3.5 APPLICATION TO UNDERGROUND COAL MINING IN AUSTRALIA

FESOFT has been used to model deformation and yield around coal mine roadways in Australia.
Much of the underground coal mining in this country is done in coal seams about 3 m thick
sandwiched between sandstone interspersed with mudstone. Thus the roof and floor of the roadways
are stiff and strong in comparison with the coal. Typically, the horizontal in situ stress in the roof and
floor strata in one direction is twice as high as the vertical, whereas the horizontal stress in the other
direction is of the order of the vertical. The in situ stresses in the coal seams are believed to be closer

irostatic. Figure 11 shows a simplified core log and the roadway geometry to be modeled.

.1us conditions encountered in drivage of roadways are very dependent on the direction in
relation to the major principal stress [24]. When a roadway is driven at an angle greater than about
30° to the major principal stress, shear fracturing on one side of the roof and floor can occur,
requiring expensive remedial measures in the way of extra support.

It has been found that one substantial benefit accrues from the presence of the fractured region
around the roadway. A neighboring road can be driven in the stress shielded region nearby and this
road experiences no adverse roof or floor behavior. It has become clear that the most important
mechanism dictating the protection of the second road is the reduction in horizontal stress in the
roof and floor because of the shear fractures around the first road. The protected road can be driven

10 m away from the first, depending on the severity of the fractures [25].
. order to model this situation FESOFT was enhanced to allow excavation sequencing. In
addition a simple joint element similar to that described by Beer [26] was implemented. This was to




68

Rock Mechanics Continuum Modeling

R

\m %@&@&@@%
X&\ &x‘%i&&%mﬁﬁ
S Y

AR I/ TR

BRRRRBHER
R AR mwu&mcmummm
302 XN R KR SN DR AT AR TR0
SR RS DT RN R 0T AR B

3
2
2
=

P
Vfarerial
Roof
(‘O;il
Floor

—_—

cater fo
strengt!
from th
Two
assume
normal
weaker
from t}
The
340 my
one st
The h&
~ound
LaaeTs
assum.
vertica
The
norm:
deforn
Afr
spite ¢
reduce
~iuhat
reduc
vield .
coloru
Th:
princt
driver
roadwv
mpo-
arch
show
bons
widtt
the !
planc
roof
fract:
fract



:‘

Figure 11  Geological core log and roadway geometry to be modeled
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Table 4 Geomechanical Parameters and in situ Stresses for Coal Mine Roadway Analysis

Material E (GPa) v 6. (MPa) k ot k* 6, (MPa) ¢, (MPa)
Roof 3300 03 170 37 57 20 15 30
Coal 850 0.3 5.1 37 17 20 15 125
Floor 2000 03 1 37 37 20 15 207

cater for observed movement along bedding planes in the roof and floor of the roadway. Low shear
strength on these bedding planes also contributes to the lack of build-up of horizontal stress away
from the fracture.

Two roadways of dimensions 6 m wide and 3 m high are driven, separated by a 12 m pillar. It is
assumed that they are driven at an angle greater than 30° to the major stress. The roads will
normally be supported with rock bolts, but the effect of these is well modeled by less postfailure
~eakening of the strata than would occur otherwise. The roof has bedding planes 1.6 m and 4 m
“~om the coal seam, and the floor has bedding planes 1.8 m and 4.5 m from the seam.

The in situ stresses are taken to be 15 MPa vertical (corresponding to a depth of cover of about
540 m), and 30 MPa horizontal in the stiff roof. (A horizontal to vertical in situ stress ratio of two to
one is commonly measured in the roof strata above seams in the Sydney Basin of New South Wales.)
The horizontal stress in the other layers varies with the stiffness in such a way that, if the outer
boundaries of the mesh were to be loaded, constant strains everywhere and uniform stresses within
layers would result. This leads to nearly hydrostatic conditions in the coal seam. The parameters
assumed for the different layers are given in Table 4, with the resulting horizontal (and assumed
vertical) in situ stress in the final columns.

The joints were all given a prefailure cohesion of 1 MPa and an angle of friction of 30°. Postfailure

ormal and shear stiffnesses are reduced in a similar way to the modulus of elasticity for the
deformation theory until the stresses satisfy the yield criterion.

A first attempt at modeling this situation failed to show much protection of an adjacent road in
spite of extensive yield around the first driven road. The failure properties of the roof and floor were
reduced quite substantially (o, to 25% of values above, with k = 3) but the model still predicted
substantial yield in the roof and floor of the second roadway. The horizontal stress is very much
reduced in the yield zone around the road but returns quite rapidly to its in situ level away from the
vield zone. The two roads are shown in Figure 12. The first road driven is on the right. The deeper
colored regions are the yield zones, the modulus factor denoting E,/E.

Three-dimensional analysis of a single roadway driven in an unfavorable direction to the major

ncipal stress [24] predicts a stress concentration on one side of the roof and floor of the first
driven road. This is confirmed by in situ observations of a massive shear fracture on one side for such
roadways. This shear fracture is typically at a low angle to the vertical (10° or 20°). Clearly it is
impossible to model this with a two-dimensional vertical slice through the roadway, when the strata
are homogeneous. It was decided to model the sequence of events by introducing the first roadway,
allowing yield and deformation in the same way as has been described above for circular excava-
tions, and then, in increment two, which is a new deformation theory analysis, a vertical slit of finite
width (300 mm) and height 4 m (4.5 m) in the right hand side of the roof (floor) is removed, to model
the shear fracture. The respective heights are so that the slit extends to the upper (or lower) bedding

“ine. The slit thus operates as a separated joint of finite width — the width is necessary so that the

5{ (floor) plate can move towards the fracture. What has been observed in situ is that the roof
‘ractures up to a parting plane, which then separates. As the roof plate sags away from the inclined
fracture, it also slips along the parting plane. Modeling this exactly requires a program with
geometric nonlinearity, but the stress shielding mechanism is modeled nearly perfectly by the
presence of the slit. A third increment excavates the second road. Figure 13 shows the final result for
this analysis. It shows clearly that the roof of the second road does not yield at all and the floor
suffers only very mild yield. The coal ribs do yield, however. Also well modeled is the movement of
the roof and floor along the bedding planes towards the fracture. The floor slit is just about closed,
whereas the roof slit is about one-third of its original width.

The artificial introduction of the slit to model the fracture is perhaps open to criticism, but is no

-~2nt in principle from the choice of block sizes and orientations in the discrete element method
or the placement of weak joints in preferred positions. What is interesting here is that a low strength
joint will not have the desired effect unless separation occurs because the horizontal stress will be
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Figure 12 Two roads with yielded and softened roof and floor
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Figure 13 Two roads with slit in roof and floor of right road
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transmitted across the joint if it only fails in shear. Also shear movement along the bedding planes
will only occur if both the fracture joint and the bedding plane where it intersects this joint fail in
tension and separate. Research is ongoing with this and other models to improve our ability
model real in situ observations. The detailed and careful modeling of onset and developmex{t
failure (e.g. [27] and [28]) will eventually be incorporated into numerical codes and will be able ..
be used to model this sort of situation. The other major challenge is the determination of realistic
input parameters to the models.

3.6 THE IMPORTANCE OF THE PSEUDO IN SITU STRESS

Clearly the parameter A which controls the level of pseudo in situ stress is a key element of the
numerical calculation procedure. It is becoming a common procedure to model a supposedly yielde
region [6, 7] or caved waste [1] by a material of lower modulus of elasticity. Naturally, for
excavation unloading problem, the in situ stress in the element is not reduced, which means that # s
taken as unity. The one exception (known to this author) to this is contained in a paper by Kaiser
[29]. Kaiser points out that a nonlinear response of a circular opening to excavation and support
may be described by the response of the same sized opening in linear elastic ground of different
stiffness and under a reduced stress field. Later in the same paper, Kaiser states ‘the observations
made at the Kielder Tunnel indicate a softened (not necessarily weakened) zone of rock near the
tunnel wall. This finding is significant because it is in strong disagreement with the generally
accepted concept of a strain-weakening, plastic zone (Egger [30]) of overstressed rock near the
tunnel” We will demonstrate that the softened ring Kaiser used was actually an excellent approxims-
tion to a strain-weakening, plastic zone!

For simplicity, we will confine the discussion to an axisymmetric in situ stress and we will ignoic
dilatancy, so that k* = 1. (However, dilatancy can be incorporated in the analysis without difficulty.)
The displacement at the opening boundary obtained from FESOFT for the mesh described above
with the parameters of problem 2 (see Section 3.4) but k* = 1, is 3.3 mm (compare this with the
FESOFT result in Table 2 of 5.7 mm for k* = 2). Note that the stresses do not vary with k*.

We will attempt to model the yield zone with one ring of the same width (1 < r < 1.8) of reduced
modulus and reduced in situ stress, bonded to the intact linear elastic medium of infinite extent
(r = 1.8). Using the analysis for a linear elastic ring bonded to a semiinfinite elastic medium of
different modulus (see Appendix), the correct displacement is obtained when the modulus of
elasticity of the softened inner ring is taken to be 0.184 GPa and 4 = 0.60 (to satisfy equation 76 w’
p: = 0). For these values, the curve labeled ‘4 Correct’ in Figure 14 shows that not only does tix
opening displacement agree with the FESOFT strain-softening analysis results, but the interface
displacement (1.5 mm) also agrees exactly. In fact it can be seen from Figure 14 that the solution in
the outer elastic ring is identical to the FESOFT results.

Referring to Figure 15, and again comparing the curve labeled ‘A4 Correct’ with the FESOFT
results, we see that the radial stress in the inner ring is moderately well modeled at the opening
boundary, although it is about double the true value at the midpoint. The hoop stress is well
approximated at the midpoint, and displays the usual opposite trend across the ring to the true
solution. The relation between the midpoint stresses is not at all close to the original yield criterion.

What is of great practical importance is that the displacement is so well modeled everywhere. T*
means that if extensometer measurements in a pilot hole in an axisymmetric stress field are we..
modeled by this crude two-ring analysis, we can be reasonably confident that the medium is also well
modeled by a Mohr-Coulomb criterion with strain-softening as in Section 3.3.3.3. It seems certain
that the pre- and post-failure properties of the medium will be able to be inferred from the
extensometer readings. This will be the subject of a future publication.

Stress measurements in the elastic region can also be compared with the predictions of the
two-ring analysis. The fact that the stresses in the yield zone are not well described should be noted
but is not a great practical disadvantage because stress measurements in a yielded region are not
possible.

Figures 14 and 15 also show the results obtained from using 4 = 1 and also the 4 obtained frc
the approximate expression in equation (66) in the yield zone. In both cases the modulus reduction
the ring was chosen to obtain the correct opening displacement. The displacements at the interface of
the yield zone and the elastic zone, in these two cases, are rather poorly approximated. In the 4 = 1
case, the displacement is 75% of the true value, in the case of the approximate /4 the displacement is
122% of the true value. This demonstrates clearly the importance of getting the pseudo in situ stress
in the yield zone right (i.e. computed according to equation 46).
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Figure 15 Stress distributions for different 4 models

The analytical approximation in Section 3.3.3.4 gives the stress distribution perfectly. This shows
that the expression for the reduction of unconfined compressive strength (equation 61) for the
spproximate solution is very close to that assumed in equation (23), at least for this problem. The

displaccmcnts in the elastic region are correct, but the solution predicts only 80% of the opening
displacement.

37 CONCLUSION

The work described here aims to model yield zones in weak rock in a relatively simple manner,
and with a view to numerical computation. The widespread practice of modeling yield zones by
& homogeneous material of lower stiffness than the intact material is shown to be, potentially, an
xcellent approximation to the deformation theory of plasticity. An important point has been
:p::sdmd - namely that the in situ stress unloaded from these regions of low stiffness must also be

uced.

We note that the theory and examples in this chapter have used the simpler Mohr-Coulomb yield
ntenon to limit the stresses around the excavation. The method can equally be applied to the
Hock-ﬁrown or other nonlinear failure criteria. It would be advisable, initially, to do careful
Comparisons, in the same way as been done here, between the deformation theory and the
ﬂc'}tmcmal theory, in order to determine the range of usefulness of the former.
thx;hc result obtained in t.he previous Section 3.6 can be extended to nonaxisymmetriq stresses,

_ shou}d not be too difficult where the full in situ stress field has been measured, it will be
possible to infer a yield criterion for 2 homogeneous rock from extensometer measurements. It will

ously be more difficult to extend this to layered strata.
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The challenge, then, for the successful application of the method is to develop a proper and
consistent method of determining the input parameters for this and other numerical models. There is
no doubt that this must incorporate some back-analysis of data obtained from monitored under-
groupd excavations in rock. This, combined with the laboratory testing and available rock mass
classification schemes, should lead over the next decade to a greatly improved ability to model and
design underground excavations where yield is an important factor.

3.8 APPENDIX: SOLUTION FOR AN ELASTIC RING BONDED TO A
SEMIINFINITE MEDIUM

For simplicity we set ¢* = 0. For a linear elastic ring j, where r; <r < r;,,, with modulus of
elasticity E; and Poisson’s ratio v, the displacement, u, at r is given by

u 1+ r? r? r? r?

Z = * 1 -2 L] — p% — R A R |

r ( E; ){pJH I: v rz] Fi [(1 ) r}+1 * "2]}/(1 r;gﬂ) (74
where p; is the radial stress at r = r;and pf = p; — 4;p, for A; given by equation (46) with E, replaced

The stresses are given by

_ ) r . r? ) r? v
Og = | Pj+1 + 2 pj r}H ) r}ﬂ (75a)
r? r? r2 r?
. = ; 1—=2)—pi(=+ -+ |
’ [plﬂ < 72) Pi ("}H 72)]/< r}+1) (730)

O = 0 (75C)

If the inner ring is (r; < r <r,), we set r, = r. where r, is given by equation (38) and p, = p, where
p. is given by equation (39). In the inner ring u is given by equation (74) with j = 1. With j = 2,
r3 = o and p; = po we recover the expression (71) from equation (74) and expressions (35a—c) from
equations (75a—c). Setting r; = r; and p, = p; to be consistent with previous notation, and using the
expression for A from equation (46)

Apo = (Ey/E)po + (1 — E/E)p.r/r} — p)/Gi/r} — 1) (76)

Equating u, evaluated in the inner ring with the value obtained from equation (71) after some
algebra gives

Ey/E = (p. — p)/{2(t — Wpo(ri/r} — 1) — pe[2(1 — W2 fr} — 1] + pdl — 2v)} W)
and the expression for u;, the displacement at the opening boundary is
w/r = [(1 + WEY[2(1 = v)(po — pIri/rl — (1 — 2v)(po — p:)] (78)

This expression has the interesting feature that the postfailure properties of the rock appear only
through the r, term (equation 38). Furthermore, this expression is identical to that obtained from the
analytical solution in the case of ideal plasticity, a truly astonishing result!
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