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Abstract: The Hoek-Brown failure criterion is a semi-empirical method widely used in the estimation of shear
strength of rock. Among other parameters involved in this criterion, the coefficient a dictates whether the criterion
applies to intact rock or rock masses (a = 0.5 for intact rock and a > 0.5 for rock masses). Most of the existing
elasto-plastic solutions for tunnel problems in Hoek-Brown media consider an intact rock (i.e., a = 0.5). This
is not only due to historical reasons (the failure criterion was originally developed for intact rock), but also due
to the mathematical difficulties of deriving neat, closed-form expressions for the general case in which a > 0.5.
This paper presents a rigorous, elasto-plastic solution for the axi-symmetrical problem of excavating a circular
tunnel in generalized Hoek-Brown material (¢ > 0.5). The solution is obtained by re-writing the generalized
Hoek-Brown failure criterion in terms of transformed stress quantities. Application of the transformation rule
described in this paper to elasto-plastic problems of excavations in generalized Hoek-Brown materials is shown
to bring significant advantages in the interpretation and extrapolation of results obtained with analytical and
numerical methods.
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1. INTRODUCTION

The Hoek-Brown failure criterion was introduced
in the early eighties to describe the shear strength
of intact rock as measured in triaxial tests (Hoek &
Brown 1980). The failure criterion for intact rock
defines the combination of major and minor principal
stresses (o and o3) at failure to be
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In the equation above, o,; is the unconfined compres-
sive strength of the rock and the coefficient m; is a
parameter that depends on the type of rock (normally
5 < m; < 40). Both parameters, o.; and m;, can be
determined from regression analysis of triaxial test
results (Hoek & Brown 1980; Hoek, Kaiser, & Baw-
den 1995).

The Hoek-Brown failure criterion was later ex-
tended to define the shear strength of rock masses.
This form of the failure criterion, that is normally
referred to as the generalized Hoek-Brown failure
criterion, is
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The coefficients my, s and a in equation (2) are semi-
empirical parameters that characterize the rock mass.

In practice, these parameters are computed based on
an empirical index called the Geological Strength In-
dex or GSI. This index lies in range 0 to 100 and can
be quantified from charts based on the quality of the
rock structure and the condition of the rock surfaces
(Hoek & Brown 1997; Hoek, Marinos, & Benissi
1998; Marinos & Hoek 2000).

In the latest update of the Hoek-Brown failure cri-
terion, the relationship between the coefficients my, s
and a in equation (2) and the GSl is as follows (Hoek,
Carranza-Torres, & Corkum 2002)

GSI — 100
My = miexp (m) ®
s = exp <GSI - lOO) (@)
9—-3D
a = l+ l (e—csms —e‘20/3) (5)
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In equations (3) and (4) D is a tactor that depends
on the degree of disturbance to which the rock has
been subjected to blast damage and stress relaxation.
This factor varies between 0 and 1. [The computer
code Roclab (Rocscience 2002), which can be down-
loaded freely from www.rocscience.com, guides the
user through the selection of appropriate values of



E Intact Rock Properties:
E. Oci = 10 MPa
5 mj =15

Rock Mass Properties:
a) GSI =100
mp=15
s=1
a=0.5

b) GSI =50
mp=2.515
s=3.866x1073
a=0.506

c)GSI=5
my=0.504

§=2.605x10°
a=0.619

o, [MPa]

Figure 1. Hoek-Brown failure criterion for intact
rock (curve a) and rock masses with decreasing val-
ues of GSI (curves b and c).
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Figure 2. The problem of excavating a circular tun-
nel in an elasto-plastic material subject to uniform
loading.

GSI, D and other significant Hoek-Brown parame-
ters in practical situations.]

It is worth noting that the failure criterion for in-
tact rock (equation 1) can be recovered from the fail-
ure criterion for rock masses (equation 2) by making
mp = m;, s = | and a = 0.5. Figure 1 illustrates

the relationship between the shear strength of intact
rock and rock masses. Curve (a) represents the shear
strength of intact rock (that corresponds to a value of
GSI=100). Curves (b) and (c) represent the failure
criterion for decreasing values of GSI, as indicated
by the values on the right side of the figure. Note that
by decreasing the quality of the rock mass (i.e., the
value of GSI), the Hoek-Brown parabolais ‘flattened’
towards the lowest limit of shear strength o, = o3.

A fundamental problem in rock engineering in-
volves the evaluation of the failure zone and conver-
gence of the wall of a circular opening (see Figure
2). This problem has applications in the determina-
tion of stability of boreholes and underground open-
ings, and the design of tunnel liners according to the
Convergence-Confinement method. In the simplest
case, both the internal pressure acting on the walls of
the tunnel and the initial stresses in the surrounding
rock mass can be considered to be uniform. Under
these conditions, the failure zone is circular and the
convergence of the tunnel wall is also uniform.

Analytical solutions for the problem in Figure 2,
in which the material obeys the Hoek-Brown failure
criterion, have been reported in the literature (Brown,
Bray, Ladanyi, & Hoek 1983; Wang 1996; Sharan
2003). Almost all of these solutions consider that that
the material satisfies the criterion for intact rock (i.e.,
a = 0.5, asinequation 1), rather than the generalized
criterion for rock masses (i.e., a > 0.5, as in equation
2). The reasons are in part historical, but are also
due to the fact that neat, closed-form expressions for
the tunnel problem can not be easily obtained when
a > 0.5.

In the following sections a rigorous, neat solution
for the problem in Figure 2, that satisfies the general-
ized Hoek-Brown criterion (equation 2), is presented.
The solution is based on a self-similar formulation
for tunnel problems satisfying the Hoek-Brown fail-
ure criterion for intact rock (equation 1), described
in Carranza-Torres & Fairhurst (1999).

The solution to be discussed here relies on a
transformation rule for stresses that simplifies sig-
nificantly the formulation of elasto-plastic problems
involving the generalized Hoek-Brown failure crite-
rion. This transformation rule is described next.

2. TRANSFORMATION OF THE
HOEK-BROWN FAILURE CRITERION

Londe (1988) showed that the Hoek-Brown fail-
ure criterion (equation 1) can be compactly written



as follows

Si =S8 +S; 6)

where §) and §j3 represent principal stresses oy and
o3, transformed as follows

g1 1
S = + — (7)
m;o.j m;
g3 1
S3 = +— 8)

m;O. m;

The transformation rule proposed by Londe can
be naturally extended to the generalized Hoek-Brown
failure criterion (equation 2) by transforming the
stresses according to the following rule

S (ea] N (9)
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S3 = (I—a)/a + I/a (10)
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In view of equations (9) and (10), the failure crite-
rion for rock masses (equation 2) can now be simply
written as

Si = 83+ St (1)

where the parameter u is

o= m;}Za—l)/a (12)

Note that when a = 0.5 (the case analyzed by
Londe), the coefficient @ in equation (12) is one,
and therefore expressions (11) and (6) are identical
—also, for this case, expressions (9) and (10) reduce
to equations (7) and (8) respectively.

The generality obtained by applying the trans-
formed Hoek-Brown failure criterion for rock masses
(equation 11) can be illustrated by a simple numerical
exercise.

Figure 3a represents the failure state for 2,000
randomly generated pairs of stresses (o7 and o3),
which are computed using the failure criterion for
rock masses. In practical terms, the dots in the dia-
gramrepresent 2,000 different, arbitrary cases of fail-
ure according to the generalized Hoek-Brown fail-
ure criterion given by equation (2). The cases rep-
resented in Figure 3a are chosen from a (uniform)
distribution of randomly generated parameters lying
in the ranges indicated in Table 1.

The random nature of the cases is clearly reflected
in Figure 3a. No evident ‘order’ appears to exist in
the values of predicted shear strength.
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Figure 3. Shear strength predicted with the general-
ized Hoek-Brown failure criterion for 2,000 random
cases. Strength is represented in terms of a) actual
and b) transformed stresses.

Figure 3b shows the same pairs representing fail-
ure in Figure 3a, after the stresses have been trans-
formed according to expressions (9) and (10), using
the corresponding values of o, myp, s and a as in
Table 1. In this new representation, the points de-
scribing possible failure states are clearly concen-
trated along a line, that in the log-log representation
of Figure 3b obeys equation (11) with the random
values of coefficients © and a. It can also be ob-
served that most of the points in Figure 3b lie below
a dashed straight line. This line, that corresponds to
the highest quality of rock mass (GSI = 100), obeys
the transformed failure criterion proposed by Londe
(equation 6).



Table 1. Characteristics of the (uniform) randomly
generated series of parameters for the analysis of
Hoek-Brown shear strength.

Variable Minimum Maximum
o.; [MPa] 0.01 200
m; [no units] 5 35
GSI [no units] 5 100
o3 [MPa] 0 50

Note: The values of my, s and a were computed from
the values of GSI above using equations (3), (4) and (5)
respectively (a factor D = 0 was considered).

The simple numerical exercise just described sug-
gests that the transformation rule for stresses (equa-
tions 9 and 10) can also be applied to solve prob-
lems in which the generalized Hoek-Brown failure
criterion applies. By doing so, one can expect that
results expressed in terms of transformed stresses
will reveal the form of the fundamental relationships
among variables in the problem. In practical terms,
this would imply that the results obtained for some
parameters in the problem could be used to extrapo-
late results for other parameters that are not actually
solved. This concept will be illustrated in Section
4. First, the elasto-plastic solution of the problem in
Figure 2 for generalized Hoek-Brown material will
be presented.

3. SOLUTION OF A CIRCULAR TUNNEL
EXCAVATED IN GENERALIZED
HOEK-BROWN MATERIAL (a > 0.5)

The solution presented in this section takes advan-
tage of the properties of self-similarity of the prob-
lem in Figure 2 to determine the field quantities, ra-
dial and hoop stresses and radial displacement, in
the plastic region » < R;. This approach has been
discussed in detail in Carranza-Torres & Fairhurst
(1999). Here, only the final expressions will be
presented (the reader interested in the details of the
formulation is referred to the publication mentioned
above). A validation example, including a compari-
son of the results with the finite difference code FLAC
(Itasca Consulting Group, Inc. 2000) and a computer
spreadsheet implementing the solution, are presented
separately as Appendices A and B, respectively.

The generalized Hoek-Brown material surround-
ing the opening in Figure 2 will be considered to

allow for softening of shear strength. Two failure en-
velopes will be considered; one for the peak strength
(curve 1 in Figure 4) and one for the residual strength
(curve 2). The Hoek-Brown parameters defining the
peak tailure envelope (curve 1) are o, myp, s and
a. The parameters defining the residual failure enve-
lope (curve 2) will be identified with the symbol ‘~’
—i.e., they are a;, m,, § and a.

[Note that perfectly-plastic behavior for the gen-
eralized Hoek-Brown material can also be considered
in the solution. This simply requires assuming resid-

ual and peak parameters to be the same.]
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Figure 4. Peak and residual failure envelopes consid-
eredfor the generalized Hoek-Brown failure criterion
for the problem in Figure 2.

The stress quantities involved in the problem of
Figure 2 will be transformed using the Hoek-Brown
parameters as explained in Section 2. Capital letters
will be used to indicate transformed stresses and the
symbol ‘~’ will indicate transformation with respect
to the residual parameters.

For example, the following are transformed
stresses using peak Hoek-Brown properties:

S, = o 42 (13)
0 m;)l —a)/a o m’l)/a
Pi s
P = — + (14)
i m;)l a)/aod m}l}/a
. < s
P — P (15)

! (l—a)/a 1/a
m, o My



The following are transformed stresses using
residual Hoek-Brown properties:

o, s

S, = — 4+ (16)
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5 Pi 5
po= ——aja- T i (7)
m,, O.j m,
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In the equations above, o, and p; are the far-field
stress and the internal pressure, respectively (see Fig-
ure 2), while p{” is the internal pressure below which
the plastic zone of extent R, develops.

A parameter [, similar to the one introduced in
equation (12) but computed in terms of residual prop-
erties, will also be considered, i.e.,

. ~(2a—1)/a
o=y (19)

Following the similarity formulation in Carranza-
Torres & Fairhurst (1999), the critical internal pres-
sure Pf" (transformed using peak properties) can be
computed from the following transcendental equa-
tion

P74 2P —28,=0 (20)

A closed-form (exact) solution that satisfies the
equation above can be found only when a = 0.5; for
this case

2
per = [1 —J1+ 16S(,] (21)
4

Numerical methods, like the Newton-Raphson
method, can be applied to approximate the exact so-
lution to equation (20) (Press, Flannery, Teukolsky,
& Vetterling 1994).

[Sofianos (2003) proposed an expression to com-
pute the value of critical internal pressure satisfying
equation (20). It should be noted that his expression
gives a reasonable approximation to the solution (for
the range of Hoek-Brown parameters normally used
in practice), but does not give the actual (exact) so-
lution to the equation.]

Once the transformed value of P¢" has been de-
termined from equation (20), the actual value of in-
ternal pressure p;” can be found from the inversion
of equation (15), i.e.,

. . N 1—
Pt = [P - w} my o (22)
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In agreement with the similarity formulation men-
tioned earlier, the extent of the plastic zone R is
computed with the following expression

Rp[ 13;,, l—a _ ﬁ’ l—a
— =eXp| ————— (23)
R (I—a)pu

[Note that in the equation above the transformed
critical internal pressure is not the same as in equa-
tion (20). In equation (20), the critical internal pres-
sure is transformed using peak parameters, while in
equation (23), it is transformed using residual pa-
rameters].

From the similarity solution, the distribution of
transformed radial stress in the plastic region is found
to be

1

~ —a T=a
S,:[P’ul +(1—Ez)/lln< s )] (24)
Rpl

and the distribution of transformed hoop stress,
Sy =S, + s} (25)
In view of the transformations (16) through (18),

the actual values of radial and hoop stresses are ob-
tained, respectively, as follows

3 I I
o = [Sr — T/&} m;, a)/uo'(-,' (26)
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Determination of the radial displacements in the
plastic zone requires solving the following differen-
tial equation,

2duz du,

i —Amd + A,
R, ds, ds,
2 AL — A= | =0 (28)
2G dp do

In the equation above, the independent variable p
is
r
Rpl

p= (29)
The quantity G is the shear modulus of the mate-
rial normalized with respect to residual Hoek-Brown
parameters, as follows,

G

~(l—a)/a ~
mb g,

i

G = (30)



The quantities ds, /dp and dSH/d,o represent the
first derivative of the transformed stresses S and SH
(equations 24 and 25), with respect to the indepen-
dent variables p, i.e.,

ds,

— = =87 (31)
P 2

ds, =i dS

= = (1+anpS* 32
dp ( +a )dp (32)

The coefficients A|, A; and A3 in equation (28)
depend on the Poisson’s ratio v and the flow rule
considered for the material.

For a linear flow rule, the coefficients are com-
puted as

A = Ky (33)
Ay = 1—v—vKy (34)
Ay = v—(1-vKy (35)

where the coefficient Ky, depends on the dilation an-
gle ¢, according to the following expression

1 +si
Ky = o (36)
1 —siny

For an associated flow-rule (i.e., a flow rule de-
rived from a potential that has the same form as the
failure surface), the coefficients A, A, and As are
computed as

do,
Ailp) = 3 (37)
0
do,
Axp) = l-v—v (38)
dp
do,
As(p) = v—=(»1- V) (39)

The boundary conditions needed to integrate the
differential equation (28) are the radial displacement
and the first derivative with respect to the variable p
at the elasto-plastic interface (i.e., at p = 1). These
expressions can be found from the condition of com-
patibility of displacements of the plastic and elastic
regions, and result to be

_ RI’[ R cr
Ll,(l) = 2G (Sn - P, ) (40)
W) = Al (41)

RI’[ DCr <
+2~U—vm—AoﬂE —&]
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The differential equation (28) can be integrated
using numerical techniques, such as the Runge-Kutta
method (Press, Flannery, Teukolsky, & Vetterling
1994). A closed-form solution is only possible when
a = 0.5 and the flow rule is linear —i.e., when the co-
efficients A, A, and Aj are given by equations (33),
(34) and (35) respectively; in this case, the solution
is

uro = g (0" = Aup)ur (D) (42)
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For the elastic-region r > R, the solution is
known already from Lamé’s solution. Using the
same notation as in the solution for the plastic region,
the transformed radial and hoop stresses and the ra-
dial displacement in the elastic region are given by
the following expressions

N N .. R\’
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The solution for the plastic and elastic regions pre-
sented in this section is validated with an application
example in Appendix A. The results for this valida-
tion problem are obtained with a computer spread-
sheet that implements the solution discussed above.
The spreadsheet and the cell formulae are presented
in Appendix B.

4. DIMENSIONLESS REPRESENTATION
OF TUNNEL RESULTS

As mentioned in Section 2, the use of the trans-
formation rule for stresses in the solution of tun-
nel problems can bring considerable advantages in
the interpretation of results. To illustrate this, we
will apply the elasto-plastic solution in Section 2 to
solve randomly generated cases of tunnel excava-
tion problems. The material properties will be the



same (randomly generated) Hoek-Brown parameters
listed in Table | (see also Figure 3). To simplify
the analysis, we will assume that the material be-
haves in a perfectly plastic manner (peak and resid-
ual properties will be assumed to be the same) and
that the tunnels are unsupported (i.e., p; = 0). To
complement the random material parameters (Table
1), we will also consider 2,000 (uniform) randomly
generated values of far-field stresses o, in the arbi-
trary range of O through 50 MPa. Young’s modulus
values will be computed using the modified semi-
empirical relationships by Serafim and Pereira (Ser-
afim & Pereira 1983), described in Hoek, Carranza-
Torres, & Corkum (2002), as a function of the ran-
domly generated values of o,; (see Table 1).
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Figure 5. Graphical representation of the solution of
2,000 random tunnel cases (Figure 2) in terms of
transformed stresses. a) Scaled extent of the failure
region. b) Scaled radial displacement of the tunnel
wall.

The numerical solution for the extent ot the plastic
zone and the radial convergence for each ot the 2,000
cases will be determined using equations (23) and
(28), respectively.

Figure 5 summarizes the results of the analysis.
Figure S5a represents the scaled extent of the plas-
tic zone R,;/R as a function of the the transformed
far-field stress S, —with S, defined as in equations
(13) or (16). Figure 5b represents the scaled extent
of the radial displacement u, at the wall of the tun-
nel also as a function of S,. When the results of the
randomly generated tunnel problems are presented in
terms of transformed stresses, ‘order’ is introduced
in the graphical representation of the (random in na-
ture) results. In practical terms, this means that the
solution can be bounded by upper and lower limits
(e.g. as defined by the dotted curves in Figures 5), so
that one can predict graphically (or analytically, after
a curve-fitting has been made) the interval in which
the solution can be expected to fall.

The importance of being able to bound the solu-
tion as described above becomes more apparent when
no closed-form solution exists for the problem ana-
lyzed, and one needs to resort to heavy-computation
schemes (like numerical models) to solve the prob-
lem. In such cases, the solution of a few well-chosen
cases will allow the shape and position of the curves
bounding the solution to be defined.

5. DISCUSSION

The transformation rule proposed in this paper al-
lows a neat solution of the problem of excavating a
circular tunnel subjected to uniform loading in gener-
alized Hoek-Brown material to be obtained. Dimen-
sionless representation of randomly generated tunnel
cases computed with this solution shows that gener-
ality can be easily accomplished in the interpretation
of results —also with the possibility of extrapolating
results to other cases that are not actually solved .

The transformation rule proposed here can also be
applied to analyze other cases for which no closed-
form solution exists —such as tunnels with non-
circular geometries or tunnels excavated in media
subject to non-uniform loading. As explained in
Section 4, numerical methods in combination with
the proposed rule will allow definition of the funda-
mental relationships between input parameters and
results, and the prediction of lower and upper limits
for results obtained with the solution.
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APPENDIX A:
COMPARISON OF ANALYTICAL AND
NUMERICAL (FLAC) RESULTS

The example presented here has been used to val-
idate the implementation of a modified version of the
generalized Hoek-Brown failure criterion in the finite
difference code FLAC (Cundall, Carranza-Torres, &
Hart 2003).

The problem considers the circular tunnel repre-
sented in Figure 2 and a generalized Hoek-Brown
material characterized by two failure envelopes (Fig-
ure 4). The following are the variables defining the
problem:



R=2m o =30MPa &, =25MPa
pi=25MPa m,=1.7 mp = 0.85
o, =15MPa  s=39x10"% §=19x103
E=57GPa a=0.55 a=0.60
v=03

The numerical solution of the problem above was
obtained with the spreadsheet described in Appendix
B.

The results are represented in Figures A.la and
A.1b. Figure A.la shows the distribution of radial
and hoop stresses around the tunnel. Figure A.1b
shows the corresponding distribution of radial dis-
placements.

Good agreement is found between the analytical
and the numerical FLAC results.
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Figure A.1. Comparison of analytical and numerical
FLAC results for the tunnel problem in Figure 2.

a) Radial and hoop stresses. b) Radial displacements
for associated and non-associated flow rules.

APPENDIX B:
SPREADSHEET FORTHE IMPLEMENTA-
TION OF THE TUNNEL SOLUTION

Figure B.2 shows the spreadsheet implementing
the solution of the problem in Figure 2, according to
the formulation discussed in Section 3 (the numer-
ical values correspond to the example discussed in
Appendix A).

The formulae in the different cells of the spread-
sheet in Figure B.2 are listed in Figure B.3 (a copy of
the electronic version of this Excel spreadsheet can
be obtained by writing to the author at the address
indicated on the first page).

The spreadsheet uses the ‘solver’ tool in Excel to
obtain the solution of the transformed critical inter-
nal pressure (equation 20). To compute the solution,
the user runs the solver for the input properties spec-
ifying the following parameters: i) ‘Set Target Cell:’
condition; ii) *Value Of:” 0; iii) 'By Changing Cells:’
piCR.

In the spreadsheet of Figure B.2, the differential
equation (28) is integrated using the Runge-Kutta
method (Press, Flannery, Teukolsky, & Vetterling
1994). The formulation is briefly outlined below.

Let us consider the following ordinary differential
equation of second order,

w' =U(p,u,u) (B.1)

In the equation above, p is the independent vari-
able and u and u’ are the unknown function and its
first derivative, respectively.

Let us consider that the values of the function and
its first derivative are known at p; —these will be
denoted as u; and u}, respectively.

The domain of integration is discretized into n
zones of length 4.

Starting with the boundary conditions u and u/
at pj, the solution and its first derivative at every
subsequent step j + 1 can be computed in terms of
the solution in the previous step, j, according to the
following expressions

1
ujpr = uj+h [u'j + g (ki + ky + k;)] (B.2)
1
Wiy, = u;+ g (ky + 2ko + 2ks + ky) (B.3)

In the equations above, the coefficients ki, k», k3
and k4 are computed as follows

ky=hxU [pj, uj, u_'i] (B.4)



ko=hxU

ka=hxU

k4=h><U

[ h h h
_/)j+§. uj+§u;. u}—}—;kl] (B.5)

5

<

h ho, ok .k
pj+ 30U + S5 + Tkl. u’y+ Ekz] (B.6)

, h?
pjth uj+hu;+ ?kz, u/j +hk3:| (B.7)

Equations (B.2) through (B.7) are implemented in
the spreadsheet of Figure B.2 by the formulae listed
in Figure B.3.

Spreadsheet for the computation of stress and displacement
distributions around circular openings subject to symmetrical
loading in generalized Hoek-Brown materials

(a) INPUT (b) OUTPUT
(a1) Opening radius (b1) Intermediate computations
R[m]: 2 (radius) G [MPa]: 2192.31 (shear)
Kpsi: 1 (Kpsi)
(a2) Loading AL -1 (coeff_A1)
sig0 [MPa}: 15 (sig0) A2: 0.4 (coeff_A2)
pi [MPa]: 2.5 (pi) A3: -0.4 (coeff_A3)
(a3) Material properties (b2) Critical Internal pressure
Deformablilty Conditio:n 0.0000 (condition)
E [MPa]: 5700.00 (young) piCR [MPa]  6.3785 (piCR)
nu: 0.30 (poiss)
psi [deg]: 0.00 (psi) (b3) Extent of plastic zone
Peak strength Rpl [m]: 3.2794 (Rpl)
sci: 30.00 (sci)
mb: 1.7000 (mb) (b4) Boundary conditions
s: 3.90E-03 (s) urt [m]: 0.006448 (urt)
a: 0.5500 (a) urtP[m]:  -0.008602 (uriP)
Resldual strength
sciR: 25.00 (sciR)
mbR: 0.8500 (mbR)
sR: 1.90E-03 (sR)
aR: 0.6000 (aR)
(a4) Maximum radial distance (to piot results)
Rmax [m}: 10 (Rmax)
(b5) Solution for the elastic region
point  r[m] rho sigr [MPa] sigt[MPa]  ur[m]
1 10.0000 3.0494 14.0728 15.9272 0.0021
2 9.6463 29415 14.0036 15.9964 0.0022
3 9.2926 28336 13.9263 16.0737 0.0023
4 8.9388 27258 13.8396 16.1604 0.0024
5 8.5851 26179 13.7420 16.2580 0.0025
6 8.2314 25101 13.6316 16.3684 0.0026
7 7.8777 24022 13.5059 16.4941 0.0027
8 7.5240 22943 13.3622 16.6378 0.0028
9 7.1703 21865 13.1966 16.8034 0.0029
10 6.8165 2.0786 13.0046 16.9954 0.0031
1 6.4628 19707 127802 17.2198 0.0033
12 6.1091 1.8629 125157 17.4843 0.0035
13 5.7554 17550 122009 17.7991 0.0037
14 5.4017 1.6472 11.8223 18.1777 0.0039
15 5.0480 15393 11.3614 18.6386 0.0042
16 4.6942 14314 10.7924 19.2076 0.0045
17 4.3405 1.3236 10.0787 19.9213 0.0049
18 3.9868 1.2157 9.1667  20.8333 0.0053
19 3.6331 1.1079 7.9756 22.0244 0.0058
20 3.2794 1.0000 6.3785 23.6215 0.0064
(Pt E) (_E) (tho_E)  (sigr_E) (sigt E)  (ur_E)

Figure B.2. Spreadsheet implementing the solution
presented in Section 3. The numerical values corre-
spond to the example described in Appendix A.

(b8) Sol
b
poi

CONONHLWN =R

(pt_P)

ution for the plastic region
-0.0205 (c_h)
r[m] rho
3.2794 1.0000 6.3785
3.2120 0.9795 6.1722
3.1447 0.9589 5.9656
3.0774 0.9384 5.7588
3.0100 0.9179 5.5519
2.9427 0.8973 5.3450
2.8754 0.8768 5.1381
2.8080 0.8563 4.9313
2.7407 0.8357 4.7247
2.6734 0.8152 4.5184
2.6060 0.7947 4.3124
2.5387 0.7741 4.1070
24714 0.7536 3.9021
2.4040 0.7331 3.6981
2.3367 0.7125 3.4949
2.2693 0.6920 3.2929
2.2020 0.6715 3.0922
2.1347 0.6509 2.8929
2.0673 0.6304 2.6955
2.0000 0.6099 2.5000
(_P) (tho_P)  (sigr_P)
r[m] rho k3
3.2794 1.0000 0.0245
3.2120 0.9795 0.0257
3.1447 0.9589 0.0271
3.0774 0.9384 0.0286
3.0100 0.9179 0.0302
2.9427 0.8973 0.0319
2.8754 0.8768 0.0339
2.8080 0.8563 0.0360
2.7407 0.8357 0.0383
2.6734 0.8152 0.0409
2.6060 0.7947 0.0437
2.5387 0.7741 0.0469
24714 0.7536 0.0504
2.4040 0.7331 0.0543
2.3367 0.7125 0.0586
2.2693 0.6920 0.0635
2.2020 0.6715 0.0691
2.1347 0.6509 0.0753
2.0673 0.6304 0.0824
2.0000 0.6099 0.0905
(r_P) (ho_P)  (c_k3)

sigr [MPa] sigt [MPa]

16.4231
16.0222
15.6182
15.2112
14.8011
14.3879
13.9715
13.5520
13.1293
12.7034
12.2743
11.8420
11.4065
10.9678
10.5260
10.0812

9.6333

9.1824

8.7287

8.2723

(sigt_P)

k4

0.0251
0.0264
0.0278
0.0293
0.0310
0.0329
0.0349
0.0371
0.0396
0.0423
0.0452
0.0486
0.0522
0.0564
0.0610
0.0662
0.0721
0.0787
0.0863
0.0949

(c_k4)

k1

0.0239
0.0251
0.0264
0.0278
0.0293
0.0310
0.0329
0.0349
0.0371
0.0396
0.0423
0.0452
0.0486
0.0522
0.0564
0.0610
0.0662
0.0721
0.0787
0.0863

(c_k1)

urP [m]
-0.0086
-0.0091
-0.0096
-0.0102
-0.0108
-0.0114
-0.0121
-0.0127
-0.0135
-0.0143
-0.0151
-0.0160
-0.0170
-0.0180
-0.0191
-0.0203
-0.0216
-0.0230
-0.0246
-0.0263

(urP_P)

k2

0.0245
0.0257
0.0271
0.0288
0.0302
0.0319
0.0339
0.0360
0.0383
0.0409
0.0437
0.0468
0.0503
0.0542
0.0586
0.0635
0.0690
0.0752
0.0823
0.0904

(c_k2)

ur [m]
0.0064
0.0066
0.0068
0.0070
0.0072
0.0075
0.0077
0.0080
0.0082
0.0085
0.0088
0.0091
0.0095
0.0098
0.0102
0.0106
0.0111
0.0115
0.0120
0.0125

(ur_P)



shear=young/2/(1+poiss)

Kpsi=(1+SIN(psi*PI()/180))/(1-SIN(psi*PI()/180))

coeff_A1=-Kpsi

coeff_A2=1-poiss-poiss*Kpsi

coeff_A3=poiss-(1-poiss)*Kpsi

condition=2*piCR+sci*(mb*piCR/sci+s)"a-2*sig0

Rpl=radius*EXP(((piCR/mbR"((1-aR)/aR)/sciR+sR/mbR"(1/aR))
“(1-aR)-(pi/mbR"((1-aR)/aR)/sciR+sR/mbR(1/aR))
“(1-aR))/((1-aR)*mbR"((2*aR-1)/aR)))

ur1=Rpl/(2*shear)*(sig0-piCR)

ur1P=coeff_A1*ur1+Rpl/(2*shear)*(1-poiss*(1-coeff_A1))
*(piCR-sig0)-Rpl/(2*shear)*(coeff_A1+poiss
*(1-coeff_A1))*((piCR-sig0)+sciR*(mbR*piCR/sciR+sR)"aR)

pt_E=(filled with series 1 through 20)

r_E=Rmax-(pt_E-1)/(20-1)*(Rmax-Rpl)

rho_E=r_E/Rpl

sigr_E=sig0-(sig0-piCR)/rho_E"2

sigt_E=sig0+(sig0-piCR)/rho_E"2

ur_E=urt/rho_E

pt_P=(filled with series 1 through 20)

r_P=Rpl-(pt_P-1)/(20-1)*(Rpl-radius)

rho_P=r_P/Rpl

sigr_P=((piCR/mbR"((1-aR)/aR)/sciR+sR/mbR"(1/aR))"(1-aR)
+(1-aR)*mbR"((2*aR-1)/aR)*LN(rho_P))"(1/(1-aR))*sciR
*mbR’((1-aR)/aR)-(sR*sciR)/mbR

sigt_P=sigr_P+sciR*(mbR*sigr_P/sciR+sR)"aR

c_k1=coeff_A1/rho_P*urP_P-coeff_A1/rho_P"2*ur_P
+Rpl/(2*shear)*(coeff_A2*(((piCR/mbR"((1-aR)/aR)/sciR
+sR/mbR"(1/aR))*(1-aR)+(1-aR)*mbR"((2*aR-1)/aR)
*LN(rho_P))"(aR/(1-aR))*sciR*mbR/(rho_P))-coeff_A3
*(sciR*mbR/(rho_P)*((piCR/mbR"((1-aR)/aR)/sciR
+sR/mbR"(1/aR))"(1-aR)+(1-aR)*mbR"((2*aR-1)/aR)
*LN(rho_P))*((2*aR-1)/(1-aR))*((piCR/mbR"((1-aR)/aR)
/sciR+sR/mbR"(1/aR))*(1-aR)+(1-aR)*mbR"((2*aR-1)/aR)
*LN(rho_P)+aR*mbR"((2*aR-1)/(aR)))))

c_k2=coeff_A1/(rho_P+c_h/2)*(urP_P+c_h/2*c_k1)
-coeff_A1/(rho_P+c_h/2)"2*(ur_P+urP_P*c_h/2)+Rpl
/(2*shear)*(coeff_A2*(((piCR/mbR"((1-aR)/aR)/sciR

Figure B.3. Formulae to be entered in the cells of the
spreadsheet in Figure B.2.

+sR/mbR"(1/aR))"(1-aR)+(1-aR)*mbR"((2*aR-1)/aR)
*LN(rho_P+c_h/2))"(aR/(1-aR))*sciR*mbR/(rho_P+c_h/2))
-coeff_A3*(sciR*mbR/(rho_P+c_h/2)*((piCR/mbR"((1-aR)
/aR)/sciR+sR/mbR"(1/aR))"(1-aR)+(1-aR)*mbR"((2*aR-1)
/aR)*LN(rho_P+c_h/2))*((2*aR-1)/(1-aR))*((piCR/mbR
"((1-aR)/aR)/sciR+sR/mbR"(1/aR))*(1-aR)+(1-aR)*mbR
“((2*aR-1)/aR)*LN(rho_P+c_h/2)+aR*mbR’((2*aR-1)/(aR)))))

c_k3=coeff_A1/(rho_P+c_h/2)*(urP_P+c_h/2*c_k2)
-coeff_A1/(rho_P+c_h/2)"2*(ur_P+urP_P*c_h/2+c_h"2/4
*c_k1)+Rpl/(2*shear)*(coeff_A2*(((piCR/mbR"((1-aR)/aR)
/sciR+sR/mbR*(1/aR))"(1-aR)+(1-aR)*mbR*((2*aR-1)/aR)
*LN(rho_P+c_h/2))"(aR/(1-aR))*sciR*mbR/(rho_P+c_h/2))
-coeff_A3*(sciR*mbR/(rho_P+c_h/2)*((piCR/mbR"((1-aR)
/aR)/sciR+sR/mbR*(1/aR))*(1-aR)+(1-aR)*'mbR"((2*aR-1)
/aR)*LN(rho_P+c_h/2))*((2*aR-1)/(1-aR))*((piCR/mbR
“((1-aR)/aR)/sciR+sR/mbR"(1/aR))*(1-aR)+(1-aR)*'mbR
“((2*aR-1)/aR)*LN(rho_P+c_h/2)+aR*mbR"((2*aR-1)
/(aR)))))

c_k4=coeff_A1/(rho_P+c_h)*(urP_P+c_h*c_k3)-coeff_A1
/(rho_P+c_h)"2*(ur_P+urP_P*c_h+c_h"2/2*c_k2)+Rpl
/(2*shear)*(coeff_A2*(((piCR/mbR"((1-aR)/aR)/sciR+sR
/mbR"(1/aR))"(1-aR)+(1-aR)*mbR*((2*aR-1)/aR)*LN(rho_P
+c_h)) (aR/(1-aR))*sciR*mbR/(rho_P+c_h))-coeff_A3*(sciR
*mbR/(rho_P+c_h)*((piCR/mbR"((1-aR)/aR)/sciR+sR/mbR
“(1/aR))*(1-aR)+(1-aR)*'mbR"((2*aR-1)/aR)*LN(rho_P+c_h))
“((2*aR-1)/(1-aR))*((piCR/mbR"((1-aR)/aR)/sciR+sR/mbR
“(1/aR))*(1-aR)+(1-aR)*mbR*((2*aR-1)/aR)*LN(rho_P+c_h)
+aR*mbR"((2*aR-1)/(aR)))))

urP_P(1st cell)=ur1P

urP_P(remaining cells)=urP_P(previous row)
+c_h/6*(c_k1(previous row)+2*c_k2(previous row)
+2*c_k3(previous row)+c_k4(previous row))

ur_P(1st cell)=ur1

ur_P(remaining cells)=ur_P (previous row)
+c_h*(urP_P(previous row)+c_h/6
*(c_k1(previous row)+c_k2 (previous row)
+c_k3(previous row)))





