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Abstract

This paper is intended to illustrate the relationship between the Hoek±Brown parameters describing the strength of rock

masses and the mechanical response of underground openings.
A formulation of the elasto-plastic behavior of rock in terms of the Hoek±Brown criterion is presented. The analysis assumes

that the joint system present in the rock mass has no preferred orientation so that the medium can be considered to behave as
an isotropic continuum. It is shown that appropriate scaling of the Hoek±Brown parameters leads to considerable simpli®cation

in de®ning the elasto-plastic response of the rock mass.
The classical case in which the excavation process is treated as a uniform reduction of internal pressure in symmetrically

loaded cylindrical and spherical cavities is considered. Closed-form expressions are given for the extent of plastic behavior and

the related stress and displacement ®elds. A dimensionless graphical representation of these solutions is provided that allows
accurate estimates of the response of excavations in Hoek±Brown materials to be made quickly and easily. Examples are given
to illustrate the use of the graphs.

Illustrative applications of the derived closed-form solutions are also described. The construction of ground reaction curves
for the design of cylindrical tunnels according to the convergence±con®nement method and a case study of stability analysis of
spherical cavities produced by underground nuclear explosions in French Polynesian atolls are discussed. # 1999 Elsevier
Science Ltd. All rights reserved.

1. Introduction

The Hoek±Brown criterion attempts to address one
of the main problems in the practical design of large
structures in or on rock masses. The presence of joints
and associated in situ geological e�ects (e.g. weather-
ing and inhomogeneities) can considerably reduce the
mechanical properties of the rock mass compared to
those of intact specimens taken from the mass.
Because it is not possible to make tests directly on the
large-scale mass, some type of estimate of the large-
scale mechanical properties is needed in order to pro-
ceed with a rational analysis for design.

The Hoek±Brown criterion has found wide practical

application as a method of de®ning the stress con-

ditions under which a rock mass will deform inelasti-

cally and, if not supported adequately, collapse. The

criterion applies for isotropic behavior. It does not

apply to materials that exhibit signi®cant anisotropy in

strength and deformability (e.g. if the rock mass con-

tains a single dominant joint direction). In such cases a

treatment with anisotropic continuum models or dis-

continuum models is more appropriate.

For cases in which the assumptions of isotropic

behavior are reasonable, the parameters de®ning the

Hoek±Brown criterion can be estimated from a combi-

nation of laboratory tests on intact rock cores and an

`adjustment' to account for the reduced strength of the

rock mass due to the presence of weaknesses and joint-

ing. This adjustment is usually performed using empiri-
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cal rules that account for the quality of the rock mass.
A detailed discussion of the process of characterization
can be found in Hoek and Brown [17]. Examples of
case histories supporting the validity of the approach
are reported by Moretto et al. [28] and Karzulovic and
Diaz [25], among others.

Although the complex geometries of many geotech-
nical design problems dictate the use of numerical
modeling to provide `more realistic' results than those
from classical analytical solutions, the insight into the
general nature of the solution (in¯uence of the vari-
ables involved, etc.) that can be gained from the classi-

Fig. 1. (a) Reference values for uncon®ned compressive strength (sci), Poisson's ratio (n ), Young's modulus (E ) and Shear modulus (G ) for

di�erent rock types (adapted from Goodman [14]); (b) Reference values for the coe�cient mi for di�erent rock types (adapted from Hoek and

Brown [17]). The values of mi is shown in parentheses below the name of the rock.
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cal solution is an important attribute that should not
be overlooked. Some degree of simpli®cation is always
needed in formulating a design analysis and it is essen-
tial that the design engineer be able to assess the gen-
eral `correctness' of a numerical analysis wherever
possible. The closed-form results provide a valuable
means of making this assessment.

The closed-form solutions that describe the elasto-
plastic behavior around circular and spherical cavities
are among the most widely used for general design
assessment, especially with respect to tunnel exca-
vations and support design. This paper describes a
dimensionless formulation of the Hoek±Brown cri-
terion that allows the criterion to be coupled directly
to the classical solutions, with the result that estimates
of practical concerns such as extent of the inelastic
zone, e�ect of support pressure, etc. can be made im-
mediately, once the appropriate Hoek±Brown par-
ameters for the rock mass have been de®ned.

2. The Hoek±Brown failure criterion

Testing of rock specimens under triaxial loading
allows the combination of stresses that lead to inelastic

deformation and, ultimately, collapse of the specimen
to be determined. The ultimate strength of rock sub-
jected to triaxial loading is known to depend on the
applied con®ning pressure. The relationship between
the strength and con®ning pressure is also known to
be nonlinear.

The Hoek±Brown failure criterion for intact rock
samples approximates the nonlinear relationship
between the maximum axial stress, s1, that can be sus-
tained by the sample and the applied con®ning stress,
s3. The relationship is de®ned by the following para-
bolic law (see for example Hoek and Brown [16]),

s1 � s3 � sci

��������������������
mi

s3
sci

� 1

r
�1�

where sci is the uncon®ned compressive strength of the
rock sample and mi is a parameter deduced from the
s1 versus s3 test results for a particular rock type.

In order to characterize the intact rock according to
the Hoek±Brown criterion, it is necessary to de®ne the
parameters sci and mi. Hoek et al. [19] have suggested
methods for ®tting the parabola de®ned by Eq. (1) to
the scattered (s1, s3) data obtained from triaxial tests.
Alternatively, when triaxial testing is not possible, the
parameters can be estimated from empirical charts.

Fig. 2. Empirical chart for the estimation of the geological strength index (GSI) based on the characteristics of the rock mass (adapted from

Hoek and Brown [17]).
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For reference purposes, Figs. 1a,b (adapted from
Goodman [14] and Hoek and Brown [17], respectively)
show typical values of sci and mi for di�erent rock
types.

As noted earlier, joints and defects in a rock mass
reduce the strength of the mass below the strength of
an intact specimen of the same rock type (Hoek et al.
[18]). By using the so-called geological strength index
(GSI) as a `scaling' parameter, the Hoek±Brown cri-
terion for the strength of intact cores in triaxial tests,
as shown in Eq. (1), can be adjusted to provide an esti-
mate of the decreased strength of the rock mass in
situ. The GSI is an empirically derived dimensionless
number that varies over a range between 10 and 100
(Hoek et al. [19]) and which can be estimated by exam-
ination of the quality of the rock mass in situ by direct
inspection of an outcrop, for example.

Figure 2 (adapted from Hoek and Brown [17])
shows how the GSI can be estimated from the struc-
ture and surface conditions of the rock mass. By de®-
nition, GSI values close to 10 correspond to very poor
quality rock mass, while GSI values close to 100 corre-
spond to excellent quality rock masses (for which the
rock mass strength is equal to the intact rock
strength).

The value GSI=25 is signi®cant in the sense that it
indicates the limit between rock masses of very poor
quality (GSI < 25) and those of good to reasonable
quality (GSI>25). According to Hoek and Brown
[17], the choice of the value GSI=25 to distinguish
between these rock qualities is arbitrary; the limit at

which the rock mass falls into the category of `very
poor' could have been taken to be some other number
close to this value. As will be seen later, there is a
clear di�erence in the mechanical behavior of rock
masses with GSI values below and above this limit.
For rock masses of good to reasonable quality (i.e.
GSI>25) the Geological Strength Index is equivalent
to the rock mass rating (RMR) introduced by
Bieniawski [3]when the rating for Groundwater is
assessed as `dry' and the rating for Joint Orientation as
`favorable'.

When the GSI scale factor is introduced, the Hoek±
Brown failure criterion for the rock mass is given by
(Hoek and Brown [17])

s1 � s3 � sci

�
mb

s3
sci

� s

�a

�2�

The parameter mb in Eq. (2) depends on both the
intact rock parameter mi (of Eq. (1)) and the value of
GSI introduced above, as de®ned by the equation

mb � miexp

�
GSIÿ 100

28

�
�3�

The parameters s and a, also depend empirically on
the value of GSI as follows, for GSIr25,

s � exp

�
GSIÿ 100

9

�
; a � 0:5 �4�

and for GSI < 25,

Fig. 3. (a) Hoek±Brown coe�cient s as a function of the geological strength index (GSI); (b) Ratios mb/mi and scm/sci as a function of GSI. For

any value of GSI < 25, the parameter s and the ratio scm/sci are both identically zero.
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s � 0; a � 0:65ÿ GSI

200
�5�

The diagrams in Fig. 3 show, in graphical form,
Eqs. (3)±(5) as a function of the GSI. When GSI=100
(the hypothetical case in which the rock mass has the
same strength as the intact rock sample), the par-
ameters are s= 1, mb=mi and a = 0.5. With these
values, the yield condition for the rock mass (Eq. (2))
and for the intact rock (Eq. (1)) are the same.

As mentioned earlier, the uncon®ned compressive
strength of the intact rock, sci, corresponds to the
strength of a rock sample under zero con®ning press-
ure Ð i.e. the strength obtained by setting s3=0 in
Eq. (1). Similarly, the uncon®ned compressive strength
for the rock mass, scrm, can be de®ned by setting
s3=0 in Eq. (2); the expression for the strength then
becomes

scrm � scis
a �6�

Thus, for the general case in which the GSI < 100,
the uncon®ned compressive strength of the rock mass
as given by Eq. (6) is smaller than the uncon®ned com-
pressive strength of the intact rock by the factor sa.
The ratio scrm/sci, plotted in Fig. 3b, shows that the
rock mass has zero uncon®ned compressive strength
whenever GSI falls below the critical limit 25. The im-

portance of this observation will be discussed in the
next section.

The Hoek±Brown criterion de®ned by Eq. (2) can
be conveniently re-scaled to obtain a unique relation-
ship that is independent of the parameters sci, mb and
s (Londe [26]). The use of transformations of this type
is common in plastic analysis. For example,
Anagnostou and Kovari [1] show how particular re-
scaling of the ®eld quantities in elasto-plastic problems
involving Mohr±Coulomb materials allows the cohe-
sion to be `hidden', resulting in a simpler formulation
of the governing equations.

The transformation suggested by Londe [26] applies
to the particular case a = 0.5 and involves dividing the
stress magnitudes by mbsci and adding the term s/mb

2.
This particular form of scaling is justi®ed by observing
the form of Eq. (2) when both sides are divided by
mbsci; i.e.

s1
mbsci

� s3
mbsci

�
� s3
mbsci

� s

m2
b

�0:5

�7�

Thus, from Eq. (7), the scaled principal stresses S1 and
S3 are de®ned naturally as,

S1 � s1
mbsci

� s

m2
b

S3 � s3
mbsci

� s

m2
b

�8�

Fig. 4. Scaled (dimensionless) form of the Hoek±Brown failure criterion in terms of the scaled maximum and minimum principal stresses S1 and

S3 respectively. The rock-mass failure criterion is characterized by three parameters: the uncon®ned compressive strength of the intact rock speci-

men, sci and the coe�cients s and mb (the parameters s and mb can be determined from Fig. 3 when the GSI value is known). The exponent a is

assumed to be 0.5.
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When expressed in terms of S1 and S3, the failure
criterion for the rock mass (Eq. (2)) takes the simple
form,

S1 � S3 �
�����
S3

p
�9�

It should be emphasized that Eq. (9) is strictly valid
only when the parameter a in Eq. (2) is equal to 0.5.
According to Eq. (4), a = 0.5 for the broad range of
situations in which GSIr25 (Fig. 2).

Londe's `re-scaled' Hoek±Brown failure criterion,
given by Eq. (9), is of general applicability. Since the
parameters sci, mb and s are `hidden' in the relation-
ship, Eq. (9) applies to any type of rock that is
assumed to obey the Hoek±Brown criterion. This can
be seen in Fig. 4, where the Hoek±Brown parabola is
represented by a single curve in the reference system of
scaled principal stresses.

The use of Eq. (9) rather than Eq. (2) can lead to
important simpli®cations in the analysis of stresses and
deformations in rock masses. This will be illustrated in
Section 4 of this paper, when considering the problem
of cylindrical and spherical cavities excavated in
`Hoek±Brown' materials.

3. Elasto-plastic solution for excavation of cylindrical
and spherical openings in `Hoek±Brown' materials

This problem is of particular importance in rock en-
gineering. When applied to cylindrical cavities, it is the
basis for the practical design of supports in tunnels
using the so-called `Convergence±Con®nement'
method (Section 4.1). The solution for spherical cav-
ities is useful in assessing the stability of the unsup-
ported region in the vicinity of the tunnel face (for
example, MuÈ hlhaus [29]) or in assessing the stability of
cavities created by underground explosions (Section
4.2).

The problem of stresses and deformations around
underground cylindrical excavations has been con-
sidered by numerous authors in the past. Brown et al.
[5] presented a thorough review of elasto-plastic sol-
utions available at the time of their paper and derived
a number of closed-form solutions for `Hoek±Brown'
materials. These solutions included some simplifying
assumptions (speci®cally in the formulation for displa-
cements). Later authors have reported di�erences
when comparing some of the results by Brown et al.
with those obtained using more rigorous elasto-plastic
numerical analyses. For example, Wang [35] identi®ed
sources of discrepancy in the solution by Brown et al.

Fig. 5. (a) Stress and displacement ®elds in the plastic region around a circular (two or three dimensional) opening; (b) Principal stresses for (i)

cylindrical and (ii) spherical openings.
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and presented a numerical solution for the correct con-
stitutive equations.

Hoek et al. [19] and Hoek [20] have recently pro-
posed an alternative method of calculation in which
equivalent frictional parameters are derived statistically
and then used in elasto-plastic solutions for a linear
Mohr±Coulomb criterion.

Several recent authors have considered ways in
which to generalize elasto-plastic problems involving
symmetrical geometries. Collins and Stimpson [8] pre-
sent a general (mechanical) self-similar solution based
on the deformation theory of plasticity that applies to
the case of expansion of cavities. Papanastasiou and
Durban [32] present an elasto-plastic analysis based on
the deformation theory of plasticity for Drucker±
Prager materials.

In the present study, the problem will be approached
using a solution derived in Carranza-Torres [6]. This
solution uses the incremental theory of plasticity in
combination with properties of mechanical self-simi-
larity. The approach is of general applicability in the
sense that it can account for any type of yield con-
dition or ¯ow rule. In this particular case, the formu-
lation is adapted to account for materials that begin to
yield as determined by the Hoek±Brown criterion and
that may or may not exhibit associated ¯ow in the
plastic regime.

The problem to be examined is represented in Fig. 5a.

The goal is to solve for the stresses and displace-

ments in the plastic and elastic regions around cylind-

rical or spherical openings of radius b. (In elasto-

plastic solutions involving circular cavities, the variable

`a' is often used to designate the radius of the cavity

and `b' to designate the radius of the elasto-plastic

interface; here, the radius of the cavity is designated

by b to avoid confusion with the parameter a in the

Hoek±Brown criterion).

The cavities are assumed to be subject, initially (i.e.

before they are created), to an internal pressure, pi and

a far-®eld stress, so. The e�ect of a monotonic re-

duction of the internal pressure pi, from the initial

value so, is considered. The limit between the elastic

and plastic regions (i.e. the radius bx ) is also to be

determined. As shown in Fig. 5b, the symmetry of the

problem allows a single formulation that can be

applied to either cylindrical or spherical cavities. In the

analysis that follows, the parameter k= 1 de®nes a

cylindrical cavity and the parameter k= 2 de®nes a

spherical cavity. (In formulating the problem for

cylindrical openings, the out-of-plane stress has been

assumed to be the intermediate principal stress).

In order not to obscure the discussion of the practi-

cal application of the method, mathematical details of

the analyses are presented separately in the Appendix

to this paper. The main results are considered below

Fig. 6. Scaled critical (internal) pressure Pi
�, for which the elastic limit of the rock mass is reached as a function of the scaled far-®eld stress, So.

(`Scaled' in this and later ®gures implies dimensionless scaling). The two shown curves correspond to (i) cylindrical and (ii) spherical excavations

in a Hoek±Brown material (so is the actual far-®eld stress; the parameters sci, s and mb de®ne the failure criterion of the rock mass).
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and application examples are presented later in Section
4.

To make the solution of general applicability, the
scaling transformation discussed in the last section will
be applied to the internal pressure, pi and the far-®eld
stresses, so. This results in the scaled (dimensionless)
internal pressure, Pi and the scaled (dimensionless) far-
®eld stress, So:

Pi � pi

mbsci

� s

m2
b

So � so

mbsci

� s

m2
b

�10�

An expression for the critical scaled internal press-
ure, Pi

�, at which plastic deformation ®rst starts to
develop around the opening is given by [see Eq. (A.57)
in the Appendix],

P�i �

24kÿ
����������������������������������
k2 � 4�k� 1�2So

q
2�k� 1�

352

�11�

The relationship in Eq. (11) is shown graphically in
Fig. 6 for values of So ranging from 0.01 to 10. These
limits should cover the range of values likely to be
encountered in practice.

When the scaled internal pressure, Pi, is larger than
the critical value, Pi

�, (i.e. Pi
�< Pi < So), the medium

around the cavity remains elastic. In this case, the
induced radial displacement at the wall (i.e. the value

of ur at r=b ) is de®ned by LameÂ 's solution (as given
by Eq. (A.3)), as

ue
r �

so ÿ pi

2kG
b �12�

As seen from Eq. (12), the resulting elastic displace-
ment (ur

e) depends on the shear modulus (G ) of the
material and on the external and internal boundary
stresses (i.e. so and pi respectively). Eq. (12) can be re-
written as

Ue
r � 1ÿ pi

so

�13�

where Ur
e is de®ned as

Ue
r �

ue
r

b

2kG

so

�14�

The relationship (Eq. (13)) is plotted in Fig. 7.
When the scaled internal pressure (Pi) is below the

critical value Pi
� (i.e. Pi < Pi), a plastic region of radial

extent bx develops around the opening. The dimen-
sionless parameter x (which expresses the size of the
failed region as a proportion of the radius of the cav-
ity) is de®ned in Eq. (A.60), repeated here as Eq. (15)

x � exp

�
2

k

� ������
P�i

p ÿ
�����
Pi

p ��
�15�

Fig. 7. Scaled wall radial displacement, Ur
e, as a function of scaled internal pressure, pi/so, for cylindrical or spherical openings in elastic ma-

terials. (b is the radius of the cavity, so and pi are the uniform far-®eld stress and internal pressure, respectively and G is the shear modulus of

the material). Note: `b' is used for the radius of the cavity Ð rather than the more customary `a' since a is used as an exponent in the Hoek±

Brown criterion (Eq. (2)).
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Fig. 8. Scaled radius of the plastic region, x, as a function of the scaled far-®eld stress, So, and the scaled internal pressure, Pi, for (a) cylindrical

and (b) spherical openings excavated in Hoek±Brown materials. (If b is the radius of the opening, bx is the extension of the plastic region; so
and pi are the far-®eld stress and the internal pressure, respectively).
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Fig. 9. Scaled wall radial displacement, Ur
p, as a function of the scaled far-®eld stress, So and the scaled internal pressure, Pi, for (a) cylindrical

and (b) spherical openings. The rock mass, assumed to obey the Hoek±Brown failure criterion, has zero dilation and a Poisson's ratio equal to

0.25; b is the radius of the opening and so and pi are the far-®eld stress and the internal pressure, respectively.
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Fig. 10. Scaled wall radial displacement, Ur
p, as a function of the scaled far-®eld stress, So, and the scaled internal pressure, Pi, for (a) cylindrical

and (b) spherical openings. The rock mass, assumed to obey the Hoek±Brown failure criterion, has a dilation angle equal to 308 and a Poisson's

ratio equal to 0.25; b is the radius of the opening and so and pi are the far-®eld stress and the internal pressure, respectively.
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Fig. 11. Scaled wall radial displacement, Ur
p, as a function of the scaled far-®eld stress, So, and the scaled internal pressure, Pi, for (a) cylindrical

and (b) spherical openings. The rock mass, assumed to obey the Hoek±Brown failure criterion and the associated ¯ow rule; the Poisson's ratio is

equal to 0.25; b is the radius of the opening and so and pi are the far-®eld stress and the internal pressure, respectively.
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This relationship (Eq. (15)) is plotted in Fig. 8a and
8b for cylindrical and spherical openings, respectively.
The horizontal axis covers the same range of values as
in Fig. 6. For the vertical axis, a maximum plastic
extension (x ) equal to 10 times the radius of the open-
ing has been chosen arbitrarily Ð this should certainly
cover most practical cases.

Examination of Fig. 3b in conjunction with Eqs.
(11) and (15) reveals an interesting practical result. As
can be seen from Fig. 3b, the uncon®ned compressive
strength of the rock mass (scrm) is zero for all
GSI < 25. The practical implication of this result is
that unsupported openings excavated in such poor
quality materials cannot sustain any load without the
development of a plastic zone around the opening.
Equations (11) and (15) provide further insight on this
phenomenon. Consider the case in which s is taken
equal to zero (i.e. the case in which GSI=25, accord-
ing to Eq. (5)). If the cavity is unsupported (i.e. the
scaled internal pressure is Pi=0), the normalized
extension (x ) of the plastic region is found, by combin-
ing Eqs. (11) and (15), to be

x � exp

24 1

k� 1

�������������������������������������������
1� 4

so

mbsci

�
k� 1

k

�2
s

ÿ 1

k� 1

35 �16�

Equation (16) indicates that x will be larger than
unity for any positive (i.e. compressive) value of far-
®eld stress, so. Note that, as so tends to zero, the nor-
malized extension x tends to 1.

Closed-form expressions for the stresses sy and sr in
the plastic region are given by Eqs. (A.58) and (A.59).

The solution for the displacement in the failed
region (in particular, the convergence of the wall Ð
i.e. the value of ur at r=b ), depends on the shear mod-
ulus, G, Poisson's ratio, n, and the ¯ow-rule considered
for the inelastic deformation regime.

Figures 9 and 10 show the radial displacement of
the wall for the case of a non-associated ¯ow rule with
constant dilation angle (two cases, dilation angles
equal to 0 and 308, respectively, are considered) and
Poisson's ratio equal to 0.25. The graphs have been
constructed using Eq. (A.38), i.e.

U p
r � x ~ur

�
1

x

�
�17�

with the scaled plastic radial displacement at the wall
given by

U p
r �

u p
r

b

2kG

so ÿ p�i
�18�

and the expression ~ur�1=x� de®ned by Eq. (A.66) in the
Appendix Ð for the particular case where r=1/x.

The scale of the vertical axis in these diagrams has

been chosen to cover a realistic practical range. Since
the magnitude Ur

p=1 represents the displacement of
the excavation wall when the material just reaches the
elastic limit (Eq. (A.24)), the vertical coordinate indi-
cates the size of the resulting plastic deformation as a
proportion of the deformation for the (limiting) elastic
case. An upper bound for the plastic wall radial displa-
cement equal to 500 times the (maximum) elastic dis-
placement has been chosen arbitrarily to cover all
practical possibilities.

The solution for the wall radial displacement in the
case of an associated ¯ow rule and Poisson's ratio
equal to 0.25 is plotted in Fig. 11a and 11b for cylind-
rical and spherical openings, respectively. These ®gures
were constructed using the same relationship (Eq. (17))
above Ð this time with the function ~u �r� given by the
solution of Eq. (A.63), together with the coe�cients
(Eq. (A.69)) (Detailed discussion of this point is pre-
sented in the Appendix).

The axes in these diagrams are similar to those for
the non-associated ¯ow rule already discussed.

Figure 11 indicates that the solution for the associ-
ated ¯ow rule is unbounded as the (scaled) internal
pressure tends to zero, i.e. as Pi 4 0. (The basic mech-
anics underlying this behavior are discussed in the
Appendix). The practical consequence is that such a
(weak) material will tend to `dilate' or `¯ow' continu-
ously when the scaled con®ning stress becomes zero.
This condition can be expected at the walls of unsup-
ported cavities in rock masses of very poor quality; in
such cases, s is zero Ð and Pi is also zero; see Eqs. (5)
and (10), respectively.

The practical consequences of this e�ect can be seen
from the diagrams in Figs. 8 and 11. In the case of a
spherical opening with a low value of So (e.g.
So20.01), the lower diagram in Fig. 8 indicates that
the plastic region will extend only a fraction of the
radius of the opening (i.e. x21); if the scaled internal
pressure is assumed to have a relatively low value (e.g.
Pi < 10ÿ5) then, according to Fig. 11b, the radial dis-
placement at the wall can take any value above the
displacement that occurs immediately before the onset
of plastic deformation (i.e. when x is almost unity).
This suggests a disproportionate development of plas-
tic dilation. Thus, to avoid this (unstable) case, the
diagrams in Fig. 11 show curves for an (arbitrary)
minimum value of Pi=10ÿ5 for the scaled internal
pressure (Pi).

4. Practical application of the graphical solution to
spherical and cylindrical cavities

The following examples are intended to illustrate the
practical application of Figs. 6±11 in determining the
elasto-plastic response of cavities. Two cases are con-
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Fig. 12. Comparison of analytical and numerical (FLAC3D) solutions for a spherical cavity in a Hoek±Brown material. (a) Characteristics of the

model. (b) Radial displacement and (c) radial and tangential stresses obtained in the analysis.
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sidered, one for a spherical cavity, the other for a
cylindrical excavation, both for a rock mass of known
properties.

We will assume that an intact rock core, sampled
from the rock mass and tested in the laboratory, indi-
cates the following (intact rock) properties

sci � 30 MPa mi � 10 E � 20 GPa n � 0:25

We will assume that the rock mass has been charac-
terized as having a GSI value of 50.

With this information, the `scaling' parameters s and
mb that account for the reduced strength of the rock
mass can be read directly from the diagrams in Fig. 3.
We ®nd that

s � 3:9� 10ÿ3
mb

mi

� 1:7� 10ÿ1

Since the value mi=10 has been found from the lab-
oratory tests, mb=1.7.

4.1. Rock mass deformability

Just as the strength of the rock mass is usually
lower than the strength of the intact rock, so, too, the
(elastic) deformation modulus of the rock mass is
usually lower than that of the intact rock. Sera®m and
Pereira [33] have proposed an empirical relationship to
compute the deformation modulus of the rock mass
from the uncon®ned compressive strength of an intact
rock sample and the value of the rock mass rating
(RMR) by Bieniawski [3]. Based on the original
equation by Sera®m and Pereira, Hoek and Brown
[17] have proposed the following relationship between
the rock mass modulus (Erm) and the GSI

Erm �
���������
sci

100

r
10

GSIÿ10
40 �19�

For the rock mass considered in this example
(GSI=50 and sci=30 MPa), Eq. (19) indicates a value
of Erm=5.5 GPa. In the equations presented earlier in
this section, the shear modulus, G, was used, rather
than the deformation modulus, E. The shear modulus
for the rock mass, Grm, can be estimated from the
modulus Erm using the classic relationship from isotro-
pic elasticity,

Grm � Erm

2�1� n� �20�

For Erm=5.5 GPa and n=0.25, we obtain Grm=2.2
GPa.

4.2. Elasto-plastic deformation around an unsupported
spherical cavity

Having determined the appropriate rock mass prop-
erties, we can now calculate the response of the rock
to the loads induced by formation of the cavity.

We consider ®rst a spherical cavity of radius b =
10 m created in a rock mass having the mechanical
properties described above. The far-®eld stress is
assumed to be so=25 MPa and the cavity is unsup-
ported, i.e. the internal pressure, pi, is equal to zero.
We will also assume the rock mass to obey a non-as-
sociated ¯ow rule with a dilation angle c equal to 308.

The scaled far-®eld stresses and internal pressure (So

and Pi respectively) needed in the diagrams are, then,

So � so

mbsci

� s

m2
b

� 0:5

Pi � pi

mbsci

� s

m2
b

� 1:4� 10ÿ3

The scaled critical internal pressure (Pi
�) for which

the elastic limit of the rock mass is reached (i.e. below
which a plastic region will develop) can now be read
from Fig. 6, i.e.

P�i �
p�i

mbsci

� s

m2
b

� 0:20

From this expression, the critical internal pressure is
found to be pi

�=10 MPa. Thus, since the internal
pressure assumed for the cavity is zero, a plastic region
will develop uniformly around the cavity.

The normalized extension of this plastic region can
be read from the lower diagram in Fig. 8,

x � 1:5

Since the cavity has a radius b = 10 m, the actual
radius of the elasto-plastic interface will be bx=15 m.

For a non-associated ¯ow rule with dilation angle
equal to 308, the normalized radial displacement at the
wall of the cavity (Ur

p ) can be read from the lower dia-
gram in Fig. 10,

U p
r �

u p
r

b

4G

so ÿ p�i
� 18

With the scaling constants already de®ned, the radial
displacement is found to be ur

p=0.31 m.
The results obtained for this example are summar-

ized in Fig. 12a.
As a check on the results, a numerical analysis was

carried out using the ®nite di�erence code FLAC3D

[22] for the same geometrical and mechanical proper-
ties. Fig. 12b shows the distribution of radial displace-
ments as a function of distance from the center of the
(spherical) cavity. The analytical solution is computed
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Fig. 13. Comparison of analytical and numerical (FLAC3D) solutions for a cylindrical cavity in a Hoek±Brown material. (a) Characteristics of

the model. (b) Radial displacement and (c) radial and tangential stresses obtained in the analysis.
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using Eq. (A.66) in the Appendix. The distribution of
radial and tangential stresses are shown in Fig. 12c.
(The analytical solution is given by Eqs. (A.58) and
(A.59)). As can be seen, there is good agreement
between the analytical solution and the FLAC3D sol-
ution.

4.3. Elasto-plastic deformation around a supported
cylindrical cavity

The second example considers a supported cylindri-

cal cavity of radius b = 5 m excavated in a rock mass

with the same properties as in the previous example.

In this case, the far-®eld stress is assumed to be so=30

MPa and the internal pressure is pi=5 MPa. Two situ-

ations are examined: one in which the rock mass obeys

an associated ¯ow-rule and another in which it obeys

a non-associated ¯ow-rule, where there is no dilation

(i.e. c=08).

For the given data, the scaled far-®eld stresses and

internal pressure are

Fig. 14. (a) Schematic representation of radial displacements in the vicinity of the face in a long cylindrical tunnel. (b) Radial displacements (nor-

malized with respect to the ®nal wall closure) versus normalized distance to the front. The squares represent extensometer measurements in the

roof of a tunnel at the Mingtam Power Cavern project while the dashed curves represent the upper and lower bounds of results obtained with

3DEC [7,23]. The solid line is a best ®t to the measured data and numerical results [21].
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So � so

mbsci
� s

m2
b

� 0:6 Pi � pi

mbsci
� s

m2
b

� 0:1

The scaled critical internal pressure (Pi
�) at which

the elastic limit of the rock mass is reached, can be
read from Fig. 6

P�i �
p�i

mbsci

� s

m2
b

� 0:32

From this expression, the critical internal pressure is
found to be pi

�=16 MPa. Since the internal pressure is
assumed to be 5 MPa, a plastic region will develop
around the cavity.

The normalized extension (x ) of this plastic region is
read from the upper diagram in Fig. 8 and is found to
be

x � 1:64

Since the cavity has a radius b = 5 m, this indicates
that the radius of the elastoplastic interface will be
bx=8.2 m.

For the associated ¯ow rule, the normalized radial
displacement at the wall of the cavity can be read
from the upper diagram in Fig. 11,

Fig. 15. (a) Schematic representation of a section of a closed circular lining and a circular tunnel used in the de®nitions of Support Characteristic

Curve (SCC) and Ground Reaction Curve (GRC) respectively. (b) Dimensionless representation of SCC, GRC and Longitudinal Deformation

Pro®le (LDP).
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U p
r �

u p
r

b

2G

so ÿ p�i
� 4:4

For the scaling constants already de®ned, the result-
ing radial displacement is found to be ur

p=0.07 m.
In the case of the non-associated ¯ow rule, the nor-

malized radial displacement, Ur
p, is read from the

upper diagram in Fig. 9; for the value obtained (i.e.
Ur

p=3.1), the radial displacement is ur
p=0.05 m.

The results for this example are summarized in Fig.
13a. A FLAC3D model was again run to compare
results. Fig. 13b shows the distribution of radial dis-
placements as a function of the distance to the center
(computed as in Fig. 12b), while Fig. 13c shows the
distribution of radial and tangential stresses. Again,
good agreement is found between the analytical ex-
pressions and the results given by FLAC3D.

4.3.1. Determination of ground reaction curves for
cylindrical tunnels Ð for use in the Convergence±
Con®nement Method of Support Design

The Convergence±Con®nement procedure is a
method of calculating the load imposed on a support
installed behind the face (or front) of the tunnel.
When a section of lining is installed in the vicinity of
the tunnel face, some part of the load redistributed
around the excavation is carried by the face. As the
face advances (i.e. away from the installed support),
the `face e�ect' decreases and the support must carry a
greater proportion of the load that the face had carried
earlier. When the face has moved well away from the
section, the support must carry, e�ectively, the full de-
sign load.

A detailed treatment of the convergence±con®ne-
ment concept can be found in Panet [31]. Only a brief
outline will be presented here. Application of the sol-
ution presented in Section 3 to construction of the
socalled `ground reaction curves' will then be
addressed in some detail.

Consider the situation shown in Fig. 14a. A cylindri-
cal tunnel of diameter D is excavated at depth in a
rock mass and is subject to a hydrostatic stress ®eld
so. The tunnel face, de®ned by the coordinate x = 0,
is advancing towards the left of the tunnel. We will
consider a support installed at a section A±A ' along
the tunnel, located at a distance L from the face. The
goal is to ®nd the ®nal pressure ps

D that the rock mass
will transmit to the support once the tunnel has
advanced su�ciently for the supporting e�ect of the
face to have disappeared. All deformations are
assumed to occur in a plane perpendicular to the axis
of the tunnel (i.e. the problem is two dimensional
plane strain). Radial displacements are also assumed
to be uniform (i.e. independent of angular position
around the excavation).

The three basic components of the convergence±con-

®nement method are, then, the longitudinal defor-
mation pro®le (LDP), the support characteristic curve
(SCC) and the ground reaction curve (GRC).

The LDP is the graphical representation of radial
displacements occurring along the axis of the tunnel
Ð for sections located ahead and behind the face. Fig.
14b shows such a pro®le. The horizontal axis rep-
resents the distance to the face, normalized with
respect to the tunnel diameter (Fig. 14(b)). The vertical
axis represents the corresponding radial displacement,
ur, normalized with respect to the ®nal radial displace-
ment ur

1 (this corresponds to the convergence in an
unsupported in®nitely long tunnel where there is no
`face e�ect'). The squares in the diagram represent
measurements obtained from extensometers in the roof
of a tunnel at the Mingtam Power Cavern project,
while the dashed lines represent lower and upper
bounds of results obtained with the numerical code
3DEC [7,23]. The solid line is a best ®t to the
measured data and results from numerical models
(Hoek [21]). Figure 14b indicates that, for sections
located approximately three diameters ahead of the
face, the radial displacement is zero (i.e. there is no
e�ect of the approaching tunnel). Similarly, for sec-
tions located approximately ®ve diameters behind the
face, the maximum possible displacement has occurred
(i.e. there is no longer a support contribution from the
face).

Consider now the sketch on the left of Fig. 15a.
This represents a section of an annular lining, thick-
ness t, to be installed in the tunnel, diameter D. A ps
imposed by the rock mass on the lining produces a
radial displacement ur. The SCC is de®ned simply as
the relationship between the increasing pressure ps and
the increasing radial displacement ur. The relationship
depends on the geometrical and mechanical character-
istics of the support. Brady and Brown [4] give
equations de®ning the SCC for several types of linings
(Fig. 15b shows a SCC for a support that is designed
to yield Ð i.e. slip, after a load represented by point T
is reached).

The sketch on the right side of Fig. 15a represents a
section along the axis of the tunnel. Here pi represents
the internal pressure provided by the support and ur
the corresponding radial displacement of the support-
rock interface. The GRC is de®ned as the relationship
between the decreasing pressure pi and the increasing
radial displacement ur. The relationship depends on
the mechanical properties of the rock mass and can be
obtained from elasto-plastic solutions, such as the one
presented in Section 3. This will be discussed later in
detail.

The LDP, SCC and GRC can all be plotted on a
single diagram, as shown in Fig. 15b. Here, the hori-
zontal axis represents the radial displacement ur at a
given section along the tunnel Ð normalized with
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respect to the ®nal radial displacement ur
1. The left

vertical axis represents the pressure pi or ps Ð acting
on the tunnel walls and support respectively, normal-
ized with respect to the far-®eld stress so (Fig. 15a);
the right vertical axis represents the normalized dis-
tance x/D from a section of the tunnel to the face
(Fig. 14a).

In this reference system, the LDP is the same curve
as shown in Fig. 14b, but rotated clockwise 90 degrees
and `inverted' about the vertical axis in Fig. 14b. The
GRC extends from point O corresponding to zero de-
formation (at x/D < ÿ 3) to point Q corresponding to
the ®nal deformation (at x/D>5). P represents the
point of transition between elastic and plastic displace-
ments (de®ned by the pressure pi

� discussed in Section
3).

The SCC extends from point R de®ned by the rela-
tive distance L/D of the section to the face (Fig. 14a)
to point T de®ned by the limiting pressure that makes
the support yield. Note that point R is directly below
point G (coordinate L/D in the vertical axis on the
right).

During the time that the support is being installed,
stability is maintained by the supporting e�ect of the
face. Thus, the vertical segment RS ' represents the
normalized pressure being taken by the face at the
moment that the support is installed. As the face
advances, both the support and excavation start
deforming by the same amount Ð with the pressure ps
on the support increasing and the con®ning e�ect pi on
the periphery of the tunnel decreasing. In the limit,
when the supporting e�ect of the face has disappeared,
the system reaches equilibrium at point S, i.e. the
intersection of the GRC and the SCC. The pressure ps

D

de®ned by point S represents the ®nal pressure (or de-
sign load) that the rock will transmit to the support.
These curves show clearly that the support will not be
subject to a pressure larger than ps

M Ð de®ned by
point M (this pressure would be achieved only in the
hypothetical case of an in®nitely rigid support installed
at the face itself; i.e. for the case of a vertical SCC,
starting at the base of the line referred to as `face pos-
ition'). On the other hand, a support will not take any
load if placed at point Q, since the maximum conver-
gence has occurred already.

The solution for cylindrical cavities presented in sec-
tion 3 assumes a monotonic reduction of internal
pressure, pi, from the initial far-®eld stress value, so.
This can be applied conveniently to the construction
of Ground Reaction Curves for rock masses obeying
the Hoek±Brown failure criterion. Consider a cylindri-
cal tunnel of diameter D, subject to hydrostatic far-
®eld stresses, so and internal pressure, pi (Fig. 5a).
Properties of the intact rock are de®ned by parameters
sci and mi. As shown in the earlier examples in Section
4, the geological strength index allows the remaining

properties of the rock mass to be de®ned; i.e. the par-
ameters mb, s and the shear modulus Grm Ð for a
given value of Poisson's ratio n.

The scaled values of far-®eld stress, So and internal
pressure, Pi, can then be computed using Eq. (10).

For a cylindrical cavity, the scaled critical internal
pressure, Pi

�, below which plastic development occurs,
is de®ned (from Eq. 11) as,

P�i �
1

16

h
1ÿ

������������������
1� 16So

p i2
�21�

Applying the inverse of the transformation (Eq.
(10)), the actual critical internal pressure, pi

�, (i.e. the
vertical coordinate of point P in Fig. 15a) is given by,

p�i �
�
P�i ÿ

s

m2
b

�
mbsci �22�

For values of internal pressure above the critical
pressure pi

� (i.e. pi>pi
�), the rock mass remains in the

elastic state. The relationship between the radial dis-
placements (ur

e) and internal pressure ( pi) in the elastic
part of the GRC (i.e. segment OP in Fig. 15b) is given
[see Eqs. (13) and (14)] by the expression

ue
r �

so ÿ pi

4Grm
D �23�

For values of internal pressure pi < pi
�, a plastic

region develops around the opening. The normalized
extent of this zone [see Eq. (15)] is,

x � exp

h
2
� ������

P�i
p ÿ

�����
Pi

p �i
�24�

Considering a non-associated ¯ow rule characterized
by a dilation coe�cient Kp

�, computed from the di-
lation angle, c, according to the expression
K�p � �1� sin c�=�1ÿ sin c�, the relationship between
the radial displacement and internal pressure in the
plastic part of the GRC (i.e. the segment PQ in Fig.
15b), is given by Eq. (A.66) in the Appendix Ð rewrit-
ten here as Eq. (25),

u p
r

D

4Grm

so ÿ p�i
� K�p ÿ 1

K�p � 1
� 2

K�p � 1
xK
�
p�1

� 1ÿ 2n
4�So ÿ P�i �

�ln x�2

ÿ
"
1ÿ 2n
K�p � 1

������
P�i

p
So ÿ P�i

� 1ÿ n
2

K�p ÿ 1

�K�p � 1�2
1

So ÿ P�i

#
�
h
�K�p � 1�ln xÿ xK

�
p�1 � 1

i
�25�

For the case of non-dilating material (i.e. Kp
�=1),

Eq. (25) takes the form,
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Fig. 16. (a) Analysis of convergence and extent of plastic behavior for a section of tunnel in the vicinity of the tunnel face. (b) Ground Reaction

Curve and normalized plastic extent for section SS ' in the model. The dots in the diagram correspond to results obtained with FLAC3D.
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u p
r

D

4Grm

so ÿ p�i
�
"
1ÿ 2n

2

������
P�i

p
So ÿ P�i

� 1

#
x2

� 1ÿ 2n
4�So ÿ P�i �

ln�x�2

ÿ 1ÿ 2n
2

������
P�i

p
So ÿ P�i

�2 ln�x� � 1� �26�

The correctness of Eqs. (22), (24) and (26) can be
veri®ed by transforming the Hoek±Brown parabola
into a linear yield envelope for which a solution
already exists. Such a transformation is obtained, for
example, by making the parameter mb in Eq. (2) tend
to zero. In such a case, the Hoek±Brown yield con-
dition transforms into the Mohr±Coulomb failure cri-
terion for zero friction angle and uncon®ned
compressive strength, scrm (Eq. (6)). Material obeying
this particular yield condition is also known as Tresca
material, with the cohesion being (1/2)scrm. The re-
lationship between the principal stresses then becomes

s1 � s3 � scrm �27�
The limit of Eqs. (22), (24) and (26) as mb tends to

zero is evaluated using l'Hopital's rule.
The critical internal pressure, pi

�, is then found to
be,

lim
mb40

p�i � so ÿ 1

2
scrm �28�

and the normalized extent, x,

lim
mb40

x � exp

�
so ÿ pi

scrm

ÿ 1

2

�
�29�

and the wall radial displacement, ur
p, is

lim
mb40

u p
r

D

4Grm

so ÿ p�i
� 2�1ÿ n�x2 ÿ �1ÿ 2n��2 ln�x� � 1� �30�

Equations (28)±(30) above are the classical ex-
pressions normally used in practice for the particular
case of frictionless non-dilating material (for example,
Duncan Fama [12] and Hoek et al. [19]).

To illustrate the construction of Ground Reaction
Curves using Eqs. (22)±(26) we will consider the case
of an unsupported section of tunnel of diameter D in
the vicinity of the face (as shown in Fig. 16a). We
wish to determine the extent of the plastic region and
the convergence as the internal pressure is reduced
from the (initial) in situ stress value towards zero Ð
for a section located ®ve diameters behind the face
(section SS ' in the ®gure). In this particular example,
the diameter of the tunnel is D= 5 m, the initial stress
®eld is so=10 MPa and the properties of the intact
material are sci=30 MPa and mi=10. Rock masses of
decreasing qualities, characterized by GSI values equal

to 50, 40 and 30, are considered. The elastic properties
are computed with Eqs. (19) and (20) assuming a
Poisson's ratio n=0.25 (the resulting properties are
summarized in Fig. 16a).

The ground reaction curves constructed using Eqs.
(21)±(26) are shown in Fig. 16b (note that alterna-
tively, the results can be obtained graphically by
means of the diagrams in Figs. 6±11). Curves repre-
senting the normalized extent, x, of the plastic region
are also included in the diagram (the value is read on
the vertical axis located on the right side of the dia-
gram). FLAC3D models were set up and solved for the
lower range of internal pressures: values of pi=0.5, 1.0
and 1.5 MPa; the results of these models are shown as
crosses in the diagrams. Good agreement is found
between the analytical solution proposed in this paper
and results obtained from the numerical models.

4.3.2. Case study. Analysis of the stability of
underground cavities left by underground test explosions
at Mururoa and Fangataufa

An underground nuclear explosion leads to the
rapid formation (within one-tenth of a second) of a
large spherical cavity of radius Rc. The shock wave
generated by the detonation produces intense damage
of the rock mass up to a distance of approximately
5Rc. Some hours or days later, the roof above the cav-
ity collapses, leading to the formation of a `chimney'
of more or less ®nely broken rock of height Hc.
Measurements indicate that the chimneys may vary in
height from approximately 5Rc for small explosions to
a maximum of 8Rc for the largest explosions (i.e.
Hc=5Rc 08Rc) above the detonation point. This
suggests that the broken rock resulting from the chim-
ney collapse has an overall or `bulk' density approxi-
mately 30 018% less than the rock in place before the
explosion (i.e. the rubble contains 30 018% void
space).

The International Geomechanical Commission
(IGC) was established at the request of the French
Government in 1995 as an independent group to assess
the long term e�ects of underground nuclear tests car-
ried out by France since 1966 on the structural stab-
ility and hydrology of the atolls of Mururoa and
Fangataufa in French Polynesia. One of the tasks of
this commission was to analyze the stability of cavities
created by the explosions and to quantify the
damage induced at the ground surface (Fairhurst et al.
[13]).

Most of the tests in the atolls were carried out in
volcanic formations (basalts) at depths between 500
and 1000 m from the surface. The volcanics were over-
lain by carbonate formations (limestones and dolo-
mites) that extend to depths of the order of 500 m
from the surface.
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Earlier underground tests at the Nevada Test Site

(USA), in volcanic tu�, had resulted in chimney for-
mation that extended continuously from the explosion

cavity to the surface Ð forming a surface subsidence cra-
ter. French o�cials maintained that this continuous col-

lapse did not develop in tests on the atolls, but that a zone
of undamaged volcanic and carbonate rock separated
and isolated the surface from the underground cavities.

The possibility that two explosions detonated in
close proximity to each other (at di�erent times) could

Fig. 17. (a) Schematic representation of two neighboring cavities created by underground nuclear test explosions. (b) Normalized extension of

the damaged region around a spherical cavity for GSI values between 10 and 100 (sci=75 MPa, mi=17 and so=28 MPa assumed).
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produce deformation due to interaction between the
two cavities was also of concern. An enlarged zone of
rock damage developed by detonation of two ex-
plosions in close proximity to each other may result in
signi®cant increased surface deformation.

Analyses were carried out to examine the stability of

(i) a single cavity and (ii) two cavities in close proxi-
mity to each other.

Although some information on the mechanical
strength of rock cores was available, there was no
direct knowledge available on the residual strength of
the spherical zones around each crater Ð i.e. where

Fig. 18. Damaged regions around cavities created by underground nuclear test explosions: (a) contours of vertical displacement and extent of the

failed region for a single cavity; (b) results for the case of two interacting cavities (numerical analysis by FLAC3D [22]).
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the rock had been damaged by the outgoing ex-
plosion shock wave. Accordingly, it was necessary to
consider several values of residual strength in examin-
ing the ability of the underground cavities to support
the overlying rock. It was not possible to inspect the
damaged zone directly, so several estimated values
were considered. The Hoek±Brown criterion was use-
ful in characterizing the damaged zones and allowed
a quick assessment to be made of the in¯uence of the
failed zones around each cavity for di�erent ranges
of initial and damaged rock mass strengths. Because
of the complex geometries of two adjacent cavities,
together with the associated collapse chimneys, it was
necessary, eventually, to conduct a numerical analy-
sis.

Fig. 17a illustrates a possible situation in which
two cavities (of radii Rc1 and Rc2, respectively) are
separated by a distance Lc. Information reported by
the IGC indicated that tests were conducted at depths
up of 1000 m (and possibly 1100 m in some cases),
with minimum distances between shot points of 250 m
and yields su�cient to produce cavities of 50 m radii
(i.e. Lc=250 m and Rc1=Rc2=50 m in Fig. 17a). For
tests that were relatively close together, it was import-
ant to determine to what degree the fractured zone
around each cavity may have overlapped and wea-
kened the column of rock between the two rubble
chimneys. In the most unfavorable situation, it was
critical to know whether the cavities could stand per-
manently, without collapse of the overlying carbonate
formations.

Before numerical models were set up, an indication
of the mechanical behavior of the underground cavities
was obtained from the parametric analysis presented
in Section 3 of this paper.

The basalts are characterized by values of sci2
75 MPa and mi217. The vertical stress at a depth
of 1000 m is so228 MPa. Since it was di�cult to
assess the internal support characteristics produced by
the rubble material acting on the walls of the (two)
chimneys when the rock mass converged onto the
chimney, it was assumed, as a `worst' case, that the
cavities and chimneys remained unsupported Ð i.e.
the rubble exerted no internal pressure ( pi=0). In such
a case, a range of possible values for the extension of
the damaged region around the cavities can be
obtained from Eq. (15) [As mentioned earlier, this part
of the study considered the `static' behavior of the
cavities, well after the tests were carried out].
Considering the whole range of possible values for
GSI (i.e. from 10 to 100), the Hoek±Brown parameters
were ®rst computed from Eqs. (4) and (5). Then, the
maximum and minimum values of scaled far-®eld
stresses were obtained from Eq. (10); they are
So=0.55 and 0.03, respectively. Similarly, the maxi-
mum and minimum values of scaled internal press-

ure were found to be Pi=2.33 � 10ÿ3 and 0, respect-
ively.

Figure 17b presents an enlargement of the diagram
in Fig. 8b. It is clearly seen that the maximum exten-
sion of the failed region around a spherical cavity will
not be greater than approximately 1.6 times the radius
of the cavity. This information, although derived
under very simple assumptions, provides a useful pre-
liminary qualitative estimate of the mechanical beha-
vior of the openings; the number indicates that the
amount of damaged material to be expected is not, for
example, 10 or 20 times the radius of the (50 m or so)
cavity (a magnitude that may have had major e�ects
at the surface, located 1000 m above), but a relatively
small fraction (around 60%) of the characteristic
dimension, Rc, of the cavity.

The problem of mechanical interaction of the cav-
ities and the resulting surface subsidence were studied
rigorously later with the three-dimensional code
FLAC3D. Several di�erent values of rock mass proper-
ties and geometries at the site were considered. The
most unfavorable situation was assumed to occur for a
value GSI=10 for the fractured volcanics surrounding
the shot points. As mentioned above, the walls of the
cavities were assumed to be stress-free. Fig. 18a shows
contours of vertical displacements for the case of a
single cavity as derived from the analysis. Fig. 18b
shows the contours in the case of two cavities located
at the minimum separation used in the tests. In both
cases, it is seen that the damaged region developing
around the cavities is of limited extent, with a maxi-
mum surface depression, in the most severe case, of 5
mm (this can be compared with surface settlements of
up to 2 m in some cases Ð due to dynamic defor-
mation associated with the initial explosion wave). For
the case of two cavities considered together, the failed
region does not overlap and the contours again indi-
cate a limited amount of subsidence (8 cm) at the sur-
face. From the results of the complete numerical
study, it is concluded that the underground cavities do
not result in any signi®cant disturbance at the ground
surface.

5. Conclusions

The dimensionless form of the Hoek±Brown cri-
terion proposed by Londe [26] provides a convenient
method of incorporating this criterion into elasto-plas-
tic analyses of rock failure.

Simpli®ed general expressions have been obtained
for the stresses, displacements and extent of the inelas-
tic region around excavations. In the case of cylindri-
cal and spherical cavities loaded hydrostatically, these
expressions have been obtained as compact closed-
form solutions.
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Use of the associated ¯ow rule for Hoek±Brown ma-
terials leads to singularities in the deformation solution
if the Geological Strength Index is less than 25. In this
case, plastic deformation around unsupported cylindri-
cal and spherical cavities increases without limit, inde-
pendently of the value of the far-®eld (in situ) stress.

Dimensionless formulation of a problem provides
valuable practical insight as to the relative importance
of parameters that a�ect the result and is a valuable
approach to use in numerical analysis. The impli-
cations of departures from the conditions assumed in
closed-form solutions can then be assessed easily.

The procedures and results described in this paper
can contribute to more e�ective use of the conver-
gence±con®nement method of analysis of the stability
of underground openings.
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Appendix A. Elasto-plastic solution for excavation of
cylindrical and spherical openings in hydrostatic loaded
medium

A.1. Problem statement

The formulation presented here is a particular case
of an elasto-plastic solution discussed in Carranza-
Torres [6]. The analysis is based on the incremental
theory of plasticity and applies to the solution of exca-

vation of cylindrical and spherical openings in a
ground initially subject to a hydrostatic stress ®eld.

The problem under consideration is shown in Fig.
5a. A cylindrical or spherical cavity of radius b is sub-
ject to a (variable) internal pressure, pi and hydrostatic
far-®eld stress, so; as the internal pressure is reduced
below the critical value, pi

�, a plastic region of exten-
sion bx develops around the cavity. (The dimensionless
parameter x de®nes the size of the plastic region as a
proportion of the radius of the opening). Due to the
symmetry of the problem, the tangential components
of displacements are everywhere zero (i.e. uy � uf � 0)
and the radial components of displacements, of magni-
tude ur, depend only on the radial distance r.

With respect to the stresses (Fig. 5b), the tangential
stresses are equal in the case of spherical openings (i.e.
sy � sf) while, in the case of cylindrical openings, the
out-of plane stress, sz, is an intermediate principal
stress. When reduction of the internal pressure, pi,
from the initial value so is considered (i.e. pi<so in
Fig. 5a), the tangential direction is a maximum princi-
pal direction and the radial direction is a minimum
principal direction (i.e. for stresses sy 1 s1, sr 1 s3
and strains ey 1 e1, er 1 e3 ).

Analysis of the two cases of cylindrical and spherical
cavities can be treated in terms of a parameter k,
where k= 1 denotes the case of cylindrical cavities
and k= 2 denotes the case of spherical cavities.

A.2. LameÂ's solution for the elastic region

The elastic solution for excavation of spherical or
cylindrical cavities in a hydrostatically loaded medium
is given by LameÂ 's solution (for example, Jaeger and
Cook [24]).

Considering the case in which p�i <pi<so (i.e. the ma-

Fig. A1. (a) Invariance of the radial stress, sr
�, at the elasto-plastic interface; (b) graphical interpretation of the plastic strain vector in principal

stress space. Points C and S represent the cases of cylindrical and spherical cavities respectively.
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terial is everywhere elastic), the distribution of radial
and tangential stresses are, respectively,

sr � so ÿ �so ÿ pi�
�
b

r

�k�1
�A:1�

sy � so � 1

k
�so ÿ pi�

�
b

r

�k�1
�A:2�

and the distribution of radial displacement is,

ur � so ÿ pi

2kG

bk�1

rk
�A:3�

In the equation above, G is the shear modulus of
the material; the other variables are as de®ned earlier.

For the case in which pi < pi
�, LameÂ 's solution

applies to the elastic region that is radially beyond the
elasto-plastic interface. An important feature of the
solution is that the radial stress sr

� at the elasto-plastic
interface is constant and independent of the position
of the boundary. This is shown in Fig. A1a. From
LameÂ 's solution, the stresses in the elastic region must
lie on the line ab. Since the yield function F(s1,s3 )=0
is de®ned in terms of the stresses s1 and s3, the point
of intersection between the `elastic' line ab and the
yield function de®nes the constant stress, sr

�, which
must be equal to the critical internal pressure, pi

�, for
which the elastic limit is reached (i.e. pi

�=sr
�).

Considering that the elasto-plastic interface has an
extent of bx and that the radial stress has the constant
value sr

� at the interface, LameÂ 's solution de®nes the
distribution of stresses and displacements within the
elastic region to be

sr � so ÿ �so ÿ s�r �
�
bx
r

�k�1
�A:4�

sy � so � 1

k
�so ÿ s�r �

�
bx
r

�k�1
�A:5�

Displacements (radial only)

ur � so ÿ s�r
2kG

�bx�k�1
rk

�A:6�

A.3. Governing equations for the plastic region

As mentioned in Section 2, the yield condition
de®nes the relationship between principal stresses at
the moment the material starts to deform inelastically.
For the problem considered here, sy 1 s1 and sr 1 s3
(Fig. 5b). The yield condition can thus be written as

F�s1,s3� 'F�sy,sr� � 0 �A:7�

In order to formulate problems in plasticity, a ¯ow
rule is also needed. The ¯ow rule can be derived from
a potential that is written in terms of principal stress
components, as in Eq. (A.7), i.e.

G�s1,s3� ' G�sy,sr� � 0 �A:8�
The ¯ow rule allows the rate of change of the princi-

pal strains to be computed.
The principal plastic-strain-rates _e p

y and _e p
r can be

evaluated from the potential G(sy,sr ) according to the
following expressions (for example Hill [15]):

_e p
y � l

@G
@sy

�A:9�

_e p
r � lk

@G
@sr

�A:10�

The graphical representation of Eqs. (A.9) and
(A.10) in principal stress space is shown in Fig. A1b.
The plastic-strain vector components are normal to the
surface de®ned by the potential G(sy,sr ). As men-
tioned in Section A.1, for the case of cylindrical open-
ings, the out-of-plane stress is assumed to be an
intermediate principal stress. The vector lies on a side
of the yield surface (point C in Fig. A1b). For the case
of spherical cavities, the vector lies on the edge of the
yield surface (point S in Fig. A1b) and the vector is
de®ned as the resultant of the normals to each side of
the junction of the two edges (for example Drescher
[11]).

An important aspect of any problem in plasticity is
the de®nition of the loading path. In the problem con-
sidered here, the loading (or, in this case, unloading)
path corresponds to a monotonic decrease of the in-
ternal pressure, pi, at the internal boundary of the
opening. Since the internal pressure pi is inversely re-
lated to the extent of the plastic region, bx, a mono-
tonic decrease of the pressure implies a monotonic
increase in extent of the elasto-plastic interface.

The incremental theory of plasticity requires the
de®nition of a time variable to evaluate the plastic
strain rates, e.g. in Eqs. (A.9) and (A.10). In the for-
mulation presented here, the dimensionless parameter
x will be assumed to be the time variable.

The displacement rate and strain rates can then be
written as

_ur � @ur
@x

_ey � @ey
@x

_e r
@er
@x

�A:11�

Similarly, the stress rates are written as

_sy � @sy
@x

_s r � @sr
@x

�A:12�

The relationship between displacements and strains

C. Carranza-Torres, C. Fairhurst / International Journal of Rock Mechanics and Mining Sciences 36 (1999) 777±809 803



can be derived from the conditions of compatibility of
deformations. For symmetrical problems in cylindrical
or spherical coordinates, these reduce to the following
expressions (for example Malvern [27]):

_ey � _ur

r
_e r � @ _ur

@r
�A:13�

The ®eld quantities in the plastic region must satisfy
the following governing equations and boundary con-
ditions.

A.3.1. Equilibrium equation
Radial and tangential stresses must satisfy the di�er-

ential equation of equilibrium:

@sr
@r
� k

sr ÿ sy
r
� 0 �A:14�

A.3.2. Consistency equation
The consistency condition implies that the material

remains in the plastic state once this state has been
achieved (i.e. the total derivative of the yield function
with respect to the kinematic parameter x must be
zero). For a perfectly plastic material, this is written as

@F
@sr

_s r � @F
@sy

_sy � 0 �A:15�

A.3.3. Compatibility of deformations
An elasto-plastic solution is constructed assuming

that the total deformations consist of both elastic and
plastic parts. Thus, the total strain rates _ey and _e r can
be written in terms of elastic (_e e

y,_e
e
r) and plastic (_ep

y,_e
p
r )

components as,

_ey � _e e
y � _ep

y �A:16�

_e r � _e e
r � _ep

r �A:17�

The relationship between the elastic components of
strain rate and stress rate is given by Hooke's law (for
example Sokolniko� [34]):

_e e
r �

1

2G

�
1ÿ �2ÿ k�n
1� �kÿ 1�n _s r ÿ kn

1� �kÿ 1�n _sy

�
�A:18�

_e e
y �

1

2G

�
1ÿ n

1� �kÿ 1�n _sy ÿ n
1� �kÿ 1�n _s r

�
�A:19�

Substituting the scalar l de®ned by Eqs. (A.9) and
(A.10) into Eqs. (A.16)±(A.19), the condition of com-
patibility of strain rates may be written as

@ _ur

@r
ÿ A1

_ur

r
� 1

2G
�A2 _s r ÿ A3 _sy� �A:20�

where

A1 � k
@G=@sr
@G=@sy

A2 � 1ÿ �2ÿ k�n� kn�@G=@sr�=�@G=@sy�
1� n�kÿ 1�

A3 � k
�1ÿ n��@G=@sr�=�@G=@sy� � n

1� n�kÿ 1� �A:21�

A.3.4. Boundary conditions
In order to solve the governing Eqs. (A.14), (A.15)

and (A.20) it is necessary to de®ne the appropriate
boundary conditions. Since the stresses sy and sr and
the radial displacement rate _ur are continuous across
the elasto-plastic interface, the boundary conditions on
the elastic side can be computed from LameÂ 's solution
[Eqs. (A.4)±(A.6)] and then used to integrate the gov-
erning equations on the plastic side of the interface. It
should be noted that the radial displacement rate, _ur,
is continuous only when the there is continuity of
strength on each side of the interface. The case of
brittle materials, for which a discontinuity in the radial
velocity ®eld exists across the interface, has been dis-
cussed in Carranza-Torres [6].

The boundary stresses are the values sr
� and sy

� dis-
cussed earlier. As shown in Fig. A1a, the stress sr

� can
be computed from the yield function and LameÂ 's sol-
ution only. If the yield function (Eq. (A.7)) is re-writ-
ten as F�sy,sr� � sy ÿ f�sr� � 0 and substituted into
the second term �so ÿ s�r ��bx=r�k�1 in Eqs. (A.4) and
(A.5), the radial stress, sr

�, can be obtained from the
following transcendental equation:

f �s�r � �
1� k

k
so ÿ s�r

k
�A:22�

Once sr
� has been determined, the stress sy

� can be
computed from the yield condition (Eq. (A.7)). The
boundary conditions for the stresses are, therefore,

srjr�bx � s�r syjr�bx � s�y �A:23�
The boundary condition for the radial displacement

is computed from Eq. (A.6) by making r=bx, i.e.

urjr�bx �
so ÿ s�r
2kG

bx �A:24�

The radial displacement rate, _u�r , is evaluated from
the same Eq. (A.6) by substituting it into Eq. (A.11),
i.e.

_urjr�bx �
b�so ÿ s�r �

2kG
�k� 1� �A:25�

An additional boundary condition is needed in
order to compute the extent bx of the elasto-plastic
interface. This condition states that the radial stress on
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the wall of the cavity must be equal to the internal
pressure, i.e.

srjr�b � pi �A:26�
The `standard' approach to solving this problem

would be to integrate directly the governing Eqs.
(A.14), (A.15) and (A.20). This would require solving
a system of partial di�erential equations. However, the
problem can be simpli®ed signi®cantly by application
of the properties of mechanical self-similarity, as
described below.

A.4. Dimensionless form of the governing equations in
the plastic region. Reduction of the time variable

The analysis that follows is based on Detournay
[10].

Consider the dimensionless variable r that maps the
physical plane (r,x ) into a plane of coordinate r
according to the following transformation:

r � r

bx
�A:27�

The space de®ned by the transformation (Eq.
(A.27)) has been referred to as `unit plane', since the
plastic region is limited by a circle of unit radius (see
Detournay [10]).

In the unit plane, the position of the elasto-plastic
interface is ®xed and given by r=1, while the wall of
the cavity, de®ned by r � 1=x, moves inward as the
plastic zone grows around the cavity.

The problem introduced earlier in Section A.1 is
said to be (mechanically) self-similar when the trans-
formation (Eq. (A.27)) is considered (for example
Barenblatt [2]). For this case, the governing Eqs.
(A.14), (A.15) and (A.20) contain the variable r as a
similarity variable (i.e. x disappears from the governing
equations when the transformation (Eq. (A.27)) is
applied).

In order to work with dimensionless ®eld quantities,
the stress magnitude, soÿsr� in Fig. A1a, is used to
normalize the stresses:

~sy � sy
so ÿ s�r

~s r � sr
so ÿ s�r

�A:28�

Strains are normalized accordingly, considering the
extra term 2kG:

~ey � 2kG

so ÿ s�r
ey ~e r � 2kG

so ÿ s�r
er �A:29�

Displacements are normalized in terms of the radius
b:

~ur � 2kG

b�so ÿ s�r �
ur �A:30�

Given transformation (Eq. (A.27)), the partial de-
rivatives of the ®eld functions with respect to the vari-
ables r and x are evaluated with the operators:

@� �
@r
� 1

bx
d� �
dr

�A:31�

@� �
@x
� ÿr

x
d� �
dr

�A:32�

In the unit plane, the equilibrium condition Eq.
(A.14) is then expressed as

d ~s r

dr
� k

~s r ÿ ~sy

r
� 0 �A:33�

Similarly, the consistency condition Eq. (A.15) is writ-
ten as

@F
@sr

d ~s r

dr
� @F
@sy

d ~sy

dr
� 0 �A:34�

and the compatibility condition Eq. (A.20), as

d ~_u r

dr
ÿ A1

~_u r

r
� ÿrk

�
A2

d ~s r

dr
ÿ A3

d ~sy

dr

�
�A:35�

with A1, A2 and A3 de®ned by Eq. (A.21).
Using the de®nition (Eq. (A.28)), the boundary con-

dition for the stresses at the elasto-plastic boundary
takes the form

~s r�1� � ~so ÿ 1 �A:36�

while the boundary condition for the radial velocity is

~_u r�1� � k� 1 �A:37�
Note that, since the transformed governing

Equations (A.33), (A.34) and (A.35) depend only on
the dimensionless variable r, the radial displacement,
ur�r,x�, in the physical plane must be related to the vel-
ocity by the expression

ur�r,x� � x
b�so ÿ s�r �

2kG
~ur�r� �A:38�

Using the operator de®ned in Eq. (A.32), the re-
lationship between radial displacement rate and radial
displacements in the unit plane is given by

~_u r � ~ur ÿ r
d ~ur

dr
�A:39�

The governing Eqs. (A.14), (A.15) and (A.20), orig-
inally expressed in partial derivatives, have now been
reduced to ordinary di�erential equations Ð in par-
ticular, Eq. (A.39), relating the velocity and the displa-
cement ®elds, allows these equations to be written in
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terms of the functions ~s r, ~sy and uÄr only (i.e. a
straight-forward integration of the velocity ®eld, ~_u r).

In summary, the equilibrium, consistency and com-
patibility equations reduce to

d ~s r

dr
� ÿk ~s r ÿ ~sy

r
�A:40�

d ~sy

dr
� ÿ @F=@sr

@F=@sy

d ~s r

dr
�A:41�

d2 ~ur

dr2
� A2k

d ~s r

dr
ÿ A3k

d ~sy

dr
� A1

r
d ~ur

dr
ÿ A1

~ur

r2
�A:42�

The boundary condition for the radial stress is the
same as in Eq. (A.36), while the boundary conditions
for the displacement ®eld are derived from Eqs.
(A.24), (A.25) and (A.39):

~ur�1� � 1 �A:43�

~u 0r�1� � ÿk �A:44�
In the equations above, ~u 0r�1� represents the ®rst de-

rivative of the displacement with respect to the simi-
larity variable, r (evaluated at the elasto-plastic
interface).

Solution of the system of Eqs. (A.40)±(A.42),
together with the boundary conditions Eqs. (A.36),
(A.43) and (A.44), gives the distribution of the ®eld
quantities ~s r, ~sy and uÄr in the unit plane.

The ®eld quantities in the physical plane are com-
puted by application of the inverse of the transform-
ation (Eq. (A.27)). The normalized radius of the
elasto-plastic interface, x, is ®rst computed using the
condition (Eq. (A.26)); i.e. ~s r�1=x� � ~p i.

A.5. Closed-form solution for the plastic region using
the normalized form of the Hoek±Brown failure
criterion

According to Eqs. (2) and (A.7), the Hoek±Brown
yield condition can be written as

F�sy,sr� � sy ÿ sr ÿ sci

�
mb

sr
sci

� s

�a

� 0 �A:45�

The parameters sci, mb, a and s were discussed and
de®ned in Section 2, where it was shown that a general
dimensionless form of the Hoek±Brown failure cri-
terion could be obtained by appropriate scaling of the
principal stress components.

In the elasto-plastic analysis presented here, the
transformations shown in Eq. (8) of the main text are
applied to the stress ®eld and to the boundary con-
ditions. The transformed radial and tangential stresses

are, then,

Sy � sy
mbsci

� s

m2
b

Sr � sr
mbsci

� s

m2
b

�A:46�

and the transformed internal pressure and far-®eld
stress are

Pi � pi

mbsci

� s

m2
b

So � so

mbsci

� s

m2
b

�A:47�

Using the expressions in Eq. (A.46), the transformed
stress rates are related to the original stress rates as
follows:

_Sy � _sy

mbsci

_Sr � _s r

mbsci

�A:48�

Also, to be consistent with the de®nition of elastic
strains rates given by Eqs. (A.18) and (A.19), the shear
modulus will be scaled according to the expression

g � G

mbsci

�A:49�

When the stress components de®ned by Eq. (A.46)
are considered, the yield condition (Eq. (A.45)) may be
written as

F�Sy,Sr� � Sy ÿ Sr ÿ
�����
Sr

p
� 0 �A:50�

In order to use the same boundary conditions given
in Eqs. (A.36), (A.43) and (A.44) in the unit plane of
coordinate r, stresses will be normalized as in Eq.
(A.28), i.e.

~Sy � Sy

So ÿ S�r
~Sr � Sr

So ÿ S�r
�A:51�

and displacements as in Eq. (A.30), i.e.

~Ur � 2kg
b�So ÿ S�r �

ur �A:52�

Considering the de®nition Eq. (A.49), the normal-
ized displacement ~Ur, de®ned above, is equal to the
displacement ~ur, de®ned in Eq. (A.30), i.e. ~Ur � ~ur.

With the above transformations, the system of gov-
erning Eqs. (A.40)±(A.42) becomes,

d ~Sr

dr
� ÿk

~Sr ÿ ~Sy

r
�A:53�

d ~Sy

dr
� ÿ @F=@Sr

@F=@Sy

d ~Sr

dr
�A:54�

d2 ~ur

dr2
� A2k

d ~Sr

dr
ÿ A3k

d ~Sy

dr
� A1

r
d ~ur

dr
ÿ A1

~ur

r2
�A:55�
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where the coe�cients A1, A2 and A3 depend on the
¯ow rule chosen (Eq. (A.21)).

For the case of perfectly plastic behavior considered
here, the problem de®ned by the governing Eqs.
(A.53)±(A.55) is statically determined (i.e. the stresses
can be solved independently of the displacements).

The solution for the stress ®eld is as follows.
The magnitude Sr

� used to scale the stress com-
ponents in Eq. (A.51) can be computed from Eq.
(A.22) and written as

S�r �
�����
S�r

p � 1� k

k
So ÿ S�r

k
�A:56�

Solution of the transcendental equation above gives

S�r �

24kÿ
����������������������������������
k2 � 4�k� 1�2So

q
2�k� 1�

352

�A:57�

As mentioned earlier, in Section A.2, the stress Sr
� is

also equal to the scaled critical internal pressure that
triggers the development of a plastic region around the
opening.

The ®rst di�erential equation to be solved is Eq.
(A.54). For perfectly plastic problems, the solution is
given simply by the scaled tangential stress derived
from the yield function (Eq. (A.45)), i.e.

~Sy � ~Sr �
�����������������

~Sr

So ÿ S�r

s
�A:58�

The distribution of radial stresses can now be
obtained by solving the di�erential Equation (A.53)
using relationship Eq. (A.58) and the boundary con-
dition Eq. (A.36), scaled according to the transform-
ation Eq. (A.47), i.e. ~Sr�1� � ~So ÿ 1. The solution is
found to be

~Sr�r� �
" ������

~S
�
r

q
� k

2
����������������
So ÿ S�r

p ln�r�
#2

�A:59�

The extent of the plastic region is found by considering
the boundary condition Eq. (A.26) with the trans-
formed internal pressure in the solution Eq. (A.59), i.e.
~Sr�1=x� � ~P i, where PÄ i is the internal pressure, Eq.
(A.47), scaled according to Eq. (A.51). Application of
solution Eq. (A.59) with the above-mentioned bound-
ary condition leads to the following expression:

x � exp

�
2

k

� �����
S�r

p ÿ
�����
Pi

p ��
�A:60�

With the stress ®eld de®ned by Eqs. (A.58) and
(A.59), displacements can be obtained by solving the
di�erential Eq. (A.55). In order to evaluate the coe�-

cients A1, A2 and A3, it is necessary to de®ne a ¯ow
rule.

Most of the existing analyses that use the Hoek±
Brown failure criterion assume a linear or `non-associ-
ated ¯ow' rule in which the dilation angle is constant.
This arises naturally when solving for Mohr±Coulomb
plastic models (for example Brady and Brown [4]). An
alternative approach is to assume a normal or `associ-
ated ¯ow' rule. In this case, the potential has the same
form as the yield function and no extra parameters
need to be introduced (Pan and Hudson [30]). The lat-
ter choice may also be justi®ed on the basis of normal-
ity of the plastic components of deformation observed
in triaxial tests on sand and clays (for example Wood
[36]).

In the present study, both ¯ow rules will be con-
sidered; the case of a nonassociated ¯ow rule will be
discussed ®rst and the associated ¯ow rule will be con-
sidered later.

The linear non-associated ¯ow rule can be derived
from the following potential:

G�Sy,Sr� � Sy ÿ K�pSr � 0 �A:61�

In the equation above, the parameter Kp
� depends on

the dilation angle c according to the relationship

K�p �
1� sin c
1ÿ sin c

�A:62�

The solution for displacements can then be derived
from the di�erential Eq. (A.55), which, when con-
sidered in conjunction with Eqs. (A.58) and (A.59),
takes the form

r2
d2 ~ur

dr2
ÿ A1r

d ~ur

dr
� A1 ~ur ÿB�r� � 0 �A:63�

where

A1 � ÿ kK�p A2 �
1ÿ �2ÿ k�nÿ knK�p

1� n�kÿ 1�
A3 � k

nÿ �1ÿ n�K�p
1� n�kÿ 1� �A:64�

and,

B�r� � rk2

So ÿ S�r

� �����
S�r

p � k

2
ln�r�

�
�
"
A2 ÿ A3 ÿ A3

2
�����
S�r

p � k ln�r�

#
�A:65�

Equation (A.63) is a linear non-homogeneous, sec-
ond-order di�erential equation of the Cauchy type.
Solution of this equation, together with the boundary
conditions Eqs. (A.43) and (A.44), leads to

C. Carranza-Torres, C. Fairhurst / International Journal of Rock Mechanics and Mining Sciences 36 (1999) 777±809 807



~ur�r� � A1 � k

A1 ÿ 1
r

�
"

k2D
2�So ÿ S�r ��1ÿ A1�3

ÿ k� 1

A1 ÿ 1

#
rA1

� k3C
4�So ÿ S�r ��1ÿ A1�r ln�r�2

� k2D
2�So ÿ S�r ��1ÿ A1�3

r��1ÿ A1�ln�r� ÿ 1� �A:66�

where

C � A2 ÿ A3

D � A2

h
2
�����
S�r

p �1ÿ A1� ÿ k
i

ÿ A3

h
2
�����
S�r

p �1ÿ A1� � �1ÿ A1� ÿ k
i

�A:67�

The displacements in the physical plane of coordi-
nates r and x can then be obtained by ®rst taking the
inverse of the transformation Eq. (A.27). The values
obtained from solution Eq. (A.66) are then multiplied
by x according to Eq. (A.38).

The problem can also be formulated to account for
an associated ¯ow rule. In this case, the potential is
the same as the yield function Eq. (A.50), i.e.

G�Sy, Sr� � Sy ÿ Sr ÿ
�����
Sr

p
� 0 �A:68�

To solve for displacements, the same di�erential Eq.
(A.63) is considered, but with the coe�cients

A1 � ÿ k

�
1� 1

2
�����
Sr

p
�

A2 �
1ÿ �2ÿ k�nÿ kn

�
1� 1

2
�����
Sr

p
�

1� n�kÿ 1�

A3 � k

vÿ �1ÿ n�
�
1� 1

2
�����
Sr

p
�

1� n�kÿ 1� �A:69�

Since the relationship between the coe�cient A1 and
the variable r is logarithmic [Eq. (A.59)], the govern-
ing Eq. (A.63) now becomes a nonlinear di�erential
equation. A solution to this equation can be obtained
by application of standard numerical integration algor-
ithms. In this study, the Runge±Kutta method was
used (for example, Press et al. [37]); the results, evalu-
ated at r � 1=x (i.e. at the wall of the cavities), are
summarized in the diagrams of Fig. 11.

It should be noted that, under certain conditions,
the use of an associated ¯ow may lead to a singular
behavior for the displacements. This is illustrated by
considering how the rate of plastic volumetric strain is
related to the stress ®eld. In the symmetrical problem
considered here, the volumetric strain rate eÇ p is de®ned
as

_e p � _ep
r � _ep

y �A:70�
Considering the relationships Eqs. (A.9) and (A.10),

together with the potential (Eq. (A.68)), the volumetric
strain is found to be related to the minimum principal
stress according to the relationship

_e p �
�
1ÿ kÿ k

2
�����
Sr

p
�

_ep
y �A:71�

It is evident from Eq. (A.71) that, in the limit, as Sr

tends to zero, the plastic volumetric strain rate
becomes in®nite and the material `¯ows' in a manner
similar to a critical state in soil mechanics. The pro-
blem has also been encountered in the implementation
of an associated ¯ow rule for the Hoek±Brown consti-
tutive model in the ®nite di�erence code FLAC3D [9].
In the problem of excavating cylindrical or spherical
openings, the conditions that lead to a zero value for
Sr are zero con®ning pressure and a zero value of the
parameter s (Eq. (A.46)). This condition can be
expected at the wall of unsupported cavities in rock
masses of very low quality (according to Eq. (5), when
GSI < 25). This is essentially the situation in which
the material is cohesionless. At zero radial stress (i.e.
an unsupported cavity), the material cannot support a
tangential stress at the boundary. Under such con-
ditions, it is simply not possible to maintain an unsup-
ported cavity.
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