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Abstract

Compared to other basic mechanical properties of rocks, Poisson’s ratio is an elastic constant of which the significance is generally
underrated. Yet, in rock mechanics, there is a considerable number of diverse areas which require a prior knowledge or estimation of the
value of Poisson’s ratio. This paper examines the values and applications of Poisson’s ratio in rock mechanics. Following an historical
account of the initial controversy, whether it was a material constant or not, the effects of Poisson’s ratio in the elastic deformation of
materials, intact rocks, and rock masses are briefly reviewed. Also, the reported values of Poisson’s ratio for some elements, materials,
and minerals are compiled while typical ranges of values are presented for some rocks and granular soils. Finally, Poisson’s ratio

classifications are recommended for isotropic intact rocks.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

ISRM Commission on Terminology, Symbols and
Graphic Representations defines Poisson’s ratio as ‘“‘the
ratio of the shortening in the transverse direction to the
elongation in the direction of applied force in a body under
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tension below the proportional limit™ [1]. It is a surprising
fact that this definition leaves much to be desired, i.e. it is
mechanically inaccurate and unsatisfactory. To begin with,
unless the initial dimension of the body parallel to loading
is equal to its lateral dimension, the definition should
involve strains not the dimensional changes such as
shortening or elongation. Then, there is the question of
missing negative sign before the ratio. Besides, the uniaxial
loading may be not only tensile but compressive as well.
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Yet, the ISRM definition has not been corrected for about
30 years.

The importance of this mechanical property has not been
appreciated as much as it deserves since the values of
Poisson’s ratio reported for rocks vary in a narrow range.
Although the use of approximate or typical values in most
rock mechanics applications does not create significant
problems, Poisson’s ratio plays an undeniably important
role in the elastic deformation of rocks and rock masses
subjected to static or dynamic stresses. Furthermore, its
effects emerge in a wide variety of rock engineering
applications, ranging from basic laboratory tests on intact
rocks to field measurements for in situ stresses or
deformability of rock masses. Therefore, information on
various aspects of Poisson’s ratio can be beneficial for rock
engineering.

This paper aims to review the values of Poisson’s ratio
for rocks. First, some historical information on Poisson’s
ratio is summarized, and its importance in mechanics is
emphasized. Then, its significance in rock mechanics is
reviewed by particular references to minerals, intact rocks,
jointed rock masses, and rock engineering applications.
Also, recommendations are given for classification of intact
rocks based on their Poisson’s ratio.

2. Historical background

Thomas Young (1773-1829) drew the attention of his
readers to a phenomenon in his Course of Lectures which
was published in 1807. He noted that, during the
experiments on tension and compression of bars, long-
itudinal deformations were always accompanied by some
change in the lateral dimensions [2].

Siméon Denis Poisson (1781-1840), in his famous
memoir [3], which was published in the year Young died
but had been read to the Paris Academy on the 14th of
April 1828 [4], made a proposal about an elastic constant
that would create some controversy in the following years.
For simple tension of an isotropic and elastic cylindrical
bar with an original length of / and radius r, Poisson
proposed that the radius had to become r(1—0.256) as the
length became /(1+ ) by the deformation [2,4]. Based on
an inadequate molecular model [5], this approach predicted
the elastic constant, we now know as Poisson’s ratio, to
assume the value of 1/4.

The results of experiments later carried out by Guillame
Wertheim (1815-1861), however, did not support Poisson’s
theoretical prediction [6]. Wertheim, using glass and
metallic cylindrical tubes for the tests, measured changes
of the internal volumes of tubes caused by the axial
extension and, thus, calculated the lateral contraction [2,4].
Although the results could be explained by using two
elastic constants for the isotropic materials, he continued
to accept the so-called “‘uni-constant hypothesis,” which
assumed only one material constant (i.e. tensile or
“stretch” modulus) for such materials. In 1848, Wertheim
recommended the value of 1/3 be adopted for “‘the ratio of

lateral contraction to longitudinal extension” without any
theoretical basis or satisfactory agreement with the results
of his experiments [2,4,6-8]. In his memoir of 1857,
Wertheim also reported results of torsion experiments with
prisms of circular, elliptical and rectangular cross sections
or tubular specimens made of iron, glass and wood [7]. He
concluded that “‘the stretch-squeeze ratio” was different
from 1/4 and closer to 1/3 [2,4].

Similarly, tests carried out by A.T. Kupftfer (1799-1865)
on metal wires did not agree with the ‘“‘uni-constant
hypothesis,” either. In 1853, Kupffer reported that the
ratio of the modulus in tension to the “‘slide modulus™ (i.e.
shear modulus) determined from torsional vibration tests
was different from 5/2, i.e. the value predicted by the
hypothesis.

Franz Ernst Neumann (1798-1895), in his correspon-
dence to Kupffer [7], assumed that the ratio of lateral
contraction to longitudinal extension did not remain
constant but depended upon the nature of material [2].
Kupffer also reported that Neumann, by fixing small
mirrors to the sides of a rectangular bar under flexure,
showed that its cross section became trapezoidal during
bending [2,7]. By measuring the angle of relative rotation
made by the two sides of the bar, Poisson’s ratio could be
calculated optically [2,7].

In 1859, Gustav Robert Kirchhoff (1824-1887), one of
Neumann’s pupils, attempted to settle the problem of uni-
constancy by direct experiments he carried out on circular
cantilever bars made of steel [8]. He applied a transverse
load with a certain eccentricity to the free ends of
cantilevers in such a way that bending and torsion were
produced simultaneously. Then, the angle of torsion and
the angle which the tangent at the end of the cantilever
made with the horizontal were measured optically by using
a mirror attached at the end of the cantilever [2]. Based on
the results of experiments, Kirchhoff reported that ‘“‘the
stretch-squeeze ratio” was 0.297 for steel and 0.387 for
brass, but he also expressed doubts about the absolute
isotropy of the bars he used [8].

Barré de Saint-Venant (1797-1886), considering pure
bending of a rectangular beam, established a basis for an
experimental determination of Poisson’s ratio. He showed
that, when the beam was subjected to equal and opposite
couples applied to the ends, initially rectangular cross
section changed its shape as shown in Fig. 1 due to lateral
contraction of the fibers on the convex side and expansion
of those on the concave side. In fact, the initially straight
line AB (i.e. neutral surface) becomes slightly curved
upwards and corresponding radius of curvature is p/v,
where v is Poisson’s ratio and p is the radius of curvature of
the axis of the bent bar (Fig. 1) [2]. Because of such a lateral
deformation, the distances of the neutral fibers A and B
from upper and lower surfaces of the bar are also slightly
altered. Actually, all the surfaces parallel to neutral surface
will be curved longitudinally downward and transversely
upward, i.e. they are strained into anticlastic surfaces [6].
By determining the ratio of the two principal curvatures of
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Fig. 1. Formation of anticlastic surfaces during uniform bending of an
elastic beam with a rectangular cross section [2].

the anticlastic surfaces, Marie Alfred Cornu (1841-1902)
carried out the first direct optical measurement of Poisson’s
ratio in 1869 [2,6,9]. In the experiments, he used glass bars
and the value obtained was almost exactly 1/4 [6]. In 1879,
H. R. Arnulph Mallock also reported about similar
bending experiments for determination of Poisson’s ratio
for several materials [6].

Woldemar Voigt (1850-1919), another one of Neu-
mann’s pupils, between 1887 and 1889, carried out
torsional and bending tests on thin prisms cut from single
crystals in various directions and determined elastic
moduli. The results definitely showed that, for isotropic
elastic bodies, two material constants needed. In a sense,
Voigt’s work finally settled the controversy over uni-
constant hypothesis [2].

Love [6] also reports about experiments for direct
determination of Poisson’s ratio by Pietro Cardani
(1858-1925) and J. Morrow, both in 1903. Finally, in
1908, Eduard August Griineisen (1877-1949) determined
Poisson’s ratio experimentally for the first time as the ratio
of lateral and longitudinal strains in uniaxial tension tests
[10]. This approach later became a basis for a common
method of measurement of Poisson’s ratio by static tests.

3. Poisson’s ratio in mechanics

Before emphasizing the significance of Poisson’s ratio in
mechanics, an accurate definition of this interesting
property should be made. There are numerous definitions
of Poisson’s ratio in the literature and many lack
completeness. Poisson’s ratio, simply, is the negative of
the ratio of transverse strain to the axial strain in an elastic
material subjected to a uniaxial stress. In mechanics of
deformable bodies, the tendency of a material to expand or
shrink in a direction perpendicular to a loading direction is
known as the “Poisson effect.”

To start with, Poisson’s ratio is encountered in expres-
sions involving Hooke’s law. The value of this material
property, which can be measured by static or dynamic
methods, varies within a narrow range. Although the
values of Poisson’s ratio for many materials are close to the

initial recommendation of 1/4 by Poisson or 1/3 by
Wertheim, it is a well-known fact today that its theoretical
value for an isotropic material is between —1 and 1/2
[2,4-6]. These lower and upper limits exist due to the fact
that Young’s (E), shear (G), and bulk (K) moduli of a
material must be positive, based on thermodynamic
restrictions [5,6,11]. As the value of Poisson’s ratio
approaches 0.5, as with the rubber like materials, the
material easily undergoes shear deformations but resists
volumetric deformation and becomes incompressible [12].
For such materials, shear modulus is much less than bulk
modulus.

Although some sources [5,11] state that materials with
negative Poisson’s ratio are unknown, there are indeed
examples of such materials. They include cellular solids
such as polymer or metallic foams with inverted or re-
entrant cell structure (e.g. v~ —0.8 for copper foam),
anisotropic fibrous composites, and crystalline materials
such as o-cristobalite [12-16]. Materials with negative
Poisson’s ratio demonstrate a ‘“‘counterintuitive” behavior
[13]: such solids laterally expand when stretched in one
direction or vice versa. A solid with Poisson’s ratio close to
—1 would be the opposite of rubber (anti-rubber); it would
be highly resistant to shear deformations but easy to
deform volumetrically, i.e. shear modulus is much greater
than bulk modulus [13-15]. Today, materials with a
negative Poisson’s ratio are called as “‘auxetic materials”
or “‘auxetics” [17].

Poisson’s ratios of some elements are listed in Table 1.
Also, for some significant materials, values of Poisson’s
ratio are compiled in Table 2.

According to Tables 1 and 2, the values of Poisson’s
ratio for many elements and materials are between 0 and
0.5.

For isotropic and elastic solids, some quantities that
depend only on Poisson’s ratio can be expressed. The ratios
of various elastic moduli are the primary examples of such
quantities:

E/G=2(1+v), ()
E/K = 3(1 — 2v), )
G/K = 1.5(1 — 2v)/(1 + V). 3)

Also, the ratio of shear wave velocity (vs) to the long-
itudinal wave velocity (vp) in an isotropic solid with an
infinite extent is another example:

vs/vp = [(0.5 — vg) /(1 — va)]'/2, 4

where vy is the dynamic Poisson’s ratio of the medium, and
it can be different than that obtained from static tests. In
addition, the ratio of Rayleigh wave velocity to the shear
wave velocity (¢ = vr/vs) depends only on the value of
Poisson’s ratio of the medium, and it can be found as the
admissible (real and positive) root of the following
equation [27]:

o8 — 8o* + 8[(2 — va) /(1 — va)]o? — 8/(1 — vg) = 0. )
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Table 1
Poisson’s ratio for some elements (data after Winter [18] and MaTecK
GmbH [19])

Element Poisson’s ratio Element Poisson’s ratio
Berillium Be 0.032 Barium Ba 0.28

Tellurium Te 0.16-0.30 Praseodymium Pr  0.281
Europium Eu 0.152 Neodymium Nd 0.281

Ytterbium  Yb 0.207
Chromium Cr 0.21

Magnesium Mg 0.291
Molybdenum Mo 0.293

Plutonium  Pu 0.21 Caesium Cs 0.295
Thulium Tm 0.213 Cadmium Cd 0.30
Uranium U 023 Rubidium Rb 0.30
Holmium Ho 0.231 Calcium Ca 0.31
Erbium Er 0.237 Nickel Ni  0.312
Manganese Mn 0.24 Titanium Ti 0.316
Dysprosium Dy 0.247 Cobalt Co 0.32
Cerium Ce 0.248 Germanium Ge 0.32
Zinc Zn 0.249 Bismuth Bi 0.33
Antimony Sb 0.25-0.33 Sodium Na 0.34
Osmium Os 0.25 Tantalum Ta 0.342
Ruthenium Ru 0.25 Copper Cu 0.343
Gadolinium Gd 0.259 Aluminum Al 0.345
Rhodium Rh 0.26 Tin Sn  0.357
Iridium Ir 026 Lithium Li 036
Rhenium Re 0.26 Vanadium vV 0.365
Hafnium Hf 0.26 Silver Ag 0.367
Lutetium Lu 0.261 Zirconium Zr 0.38
Terbium Tb 0.261 Platinum Pt 0.39
Yttrium Y 0.265 Palladium Pd 0.39
Thorium Th 0.27 Niobium Nb 0.397
Iron Fe 0.27 Gold Au 042
Samarium Sm 0.274 Silicon Si 042
Scandium Sc  0.279 Lead Pb 044
Strontium Sr 0.28 Selenium Se  0.447
Tungsten W 0.28 Thallium Tl 045
Lanthanum La 0.28 Indium In 045
Promethium Pm 0.28 Gallium Ga 047

In general, Poisson’s ratio does not have an effect on the
distribution of stresses in plane elasticity problems that do
no involve body forces. Yet, for three-dimensional stress
situations, the effect of Poisson’s ratio can be striking.
A typical example for such an effect is the formation of
anticlastic surfaces in a rectangular beam subjected to
uniform bending (Fig. 1). Moreover, Poisson’s ratio
influences the stresses resulting from bending of bars or
plates, contact of elastic bodies, rotating discs, etc. [9].

For elastic materials that demonstrate certain deforma-
tional anisotropy, multiple Poisson’s ratios are expressed.
For example, three Poisson’s ratios are defined for
transversely isotropic materials, and two of these are
independent (Fig. 2). Although the elasticity theory does
not impose certain limits on Poisson’s ratios for such
materials, there is a specific inequality derived from energy
considerations. It is as follows [28,29]:

2V2V3<1 — Vi, (6)

where vy, v,, and v3 are defined in Fig. 2. For Poisson’s
ratios defined in other directions, some unusual values may

Table 2

Poisson’s ratio for some materials

Material Poisson’s ratio Source

Cork ~0 Lakes [12]
Diamond

(natural) 0.10-0.29 Miyoshi [20]
(synthetic) 0.20 Miyoshi [20]
Concrete

(28-day old) 0.10-0.21 Howatson et al. [21]
(high performance) 0.13-0.16 Persson [22]

Glass

(quartz) 0.167 Bass [23]

(obsidian) 0.185 Bass [23]

(soda) 0.23 Howatson et al. [21]
(borosilicate) 0.25 Howatson et al. [21]
Sulfur 0.20-0.34 Bass [23]

Porcelain 0.208 Kumar et al. [24]
Tungsten carbide (WC) 0.222 Kumar et al. [24]
Cast iron

(gray) 0.26 Howatson et al. [21]
(nodular) 0.28 Howatson et al. [21]
Steel

(mild) 0.27-0.30 Howatson et al. [21]
(high strength) 0.30 Howatson et al. [21]
Shotcrete 0.25-0.29 Lorman [25]
Human dentine (dry) 0.29 Kinney et al. [26]
Perspex 0.311 Kumar et al. [24]
Ice (at 257K) 0.324 Bass [23]
Aluminum 2024 0.33 Howatson et al. [21]
Brass (70 Cu/30 Zn) 0.35 Howatson et al. [21]
Lucite 0.358 Kumar et al. [24]
PVC (hard) 0.378 Kumar et al. [24]
Phosphor bronze (5% 0.38 Howatson et al. [21]
Sn)

Epoxy resin 0.38-0.40 Howatson et al. [21]
Teflon 0.399 Kumar et al. [24]
Nylon 0.40 Kumar et al. [24]
Rubber ~0.50 Lakes [12]

be obtained. In fact, it has been theoretically shown that
Poisson’s ratio for anisotropic materials can have an
arbitrarily large positive or negative value as long as the
strain energy density is positive definite [30,31]. Further-
more, for orthotropic elastic materials, six Poisson’s ratios
are defined (Fig. 3) and three of these are independent
[27,28,32]. According to the notation in Fig. 3, vy is
Poisson’s ratio defined by —¢;j/¢; for the uniaxial stress o;.
Transverse isotropy and orthotropy are observed in certain
rock types and jointed rock masses, and this issue is
addressed in the next section.

4. Poisson’s ratio in rock mechanics

Since Poisson’s ratio is a mechanical property that plays
a role in the deformation of elastic materials, it is utilized in
rock engineering problems associated with the deformation
of rocks, e.g. it is a required computational input for the
numerical stress analyses. In the related literature [33,34],
though very seldom, negative values or values greater than
0.5 are reported for Poisson’s ratio of some rock types.
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Those few cases, probably, are associated with highly
anisotropic rocks; also, it is reported that thermally
induced microcracking in granites causes negative Pois-
son’s ratio in compression and tension [35]. For isotropic
rocks, therefore, the value of Poisson’s ratio is practically

between 0 and 0.5. In fact, the range bounded by the values
of 0.05 and 0.45 covers most rocks. Also, in some rock
engineering applications with limited field data, a value
between 0.2 and 0.3 is a common estimate for Poisson’s
ratio.

4.1. Poisson’s ratio of minerals

The values of Poisson’s ratio for some minerals are listed
in Table 3. It should be noted that the number of
independent elastic constants appropriate to a mineral
crystal depends on its crystal symmetry, and it ranges from
three for a cubic crystal to twenty one for a triclinic crystal
[23]. Therefore, for single crystals of minerals, it may not be
possible to give a value for Poison’s ratio. Using the values
of elastic constants for anisotropic crystals, average
isotropic elastic constants can be determined for a
polycrystalline aggregate of the same material [36]. Bass
[23] calculated and presented the Hill averages of the Voigt
(upper) and Reuss (lower) bounds for isotropic bulk and
shear moduli of some minerals. The Poisson’s ratio values
listed in Table 3 are calculated using the values of adiabatic
bulk modulus and shear modulus for an equivalent
isotropic polycrystalline aggregate.

An interesting item in Table 3 is o-cristobalite, a
crystalline form of silica (SiO,). Its Poisson’s ratio varies
between 0.08 and —0.5, depending on direction; in
addition, the Voigt and Reuss bounds for Poisson’s ratio
of polycrystalline a-cristobalite are reported as vy = —0.13
and vg = —0.19, respectively [15]. Similarly, for a single
crystal pyrite (FeS,), Love [6] reported a negative Poisson’s
ratio (v~ —1/7) and suggested that this ‘“‘somewhat
paradoxical” value might be due to twinning of the
crystals; yet, recent data (v =0.016—0.160) [23] did not
confirm this result.

4.2. Poisson’s ratio of intact rocks

Although the values of Poisson’s ratio for rock masses
are required in majority of rock engineering applications,
there are some instances when the values for intact rocks
are necessary. For example, in overcoring methods
employing the CSIR doorstopper, USBM borehole defor-
mation gauge, CSIR triaxial strain cell, and CSIRO hollow
inclusion cell, the value of Poisson’s ratio for intact rock
(i.e. stress relieved cores or overcores) is required for
evaluation and interpretation of measurements [37,38]. In
addition, the intact rock value can be considered as a limit
for the values of Poisson’s ratio that a jointed rock mass
may assume. In Fig. 4, typical ranges of values are
presented for Poisson’s ratio of some rock types. It should
be realized that some unusually extreme values are not
included in the figure, and exceptions are always possible in
the nature.

Generally, Poisson’s ratio of intact rocks can be
determined in the laboratory either indirectly by dynamic
methods [39,40] or directly by static tests [41,42].
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Table 3
Poisson’s ratio for some minerals (calculated using data after Bass [23])

Mineral Poisson’s ratio
a-Cristobalite (SiO,) —0.164
Diamond (C) 0.069
a-Quartz (SiO,) 0.079
Periclase (MgO) 0.182

Topaz (Aly(F, OH), SiOy) 0.221
Graphite (C) 0.223
Sapphire (Al,O3) 0.234
Magnesite (MgCO3) 0.251

Halite (NaCl) 0.253
Magnetite (Fe;0,) 0.262
Galena (PbS) 0.270
Anhydrite (CaSQO,4) 0.273
Rutile (TiO,) 0.278
Chromite (FeO - Cr,03) 0.280
Albite (NaAlSi;Og) 0.285
Fluorite (CaF,) 0.289
Dolomite (CaMg(CO3),) 0.292
Calcite (CaCOs3) 0.309
Sphalerite (ZnS) 0.320
Uraninite (UO;) 0.325
Gypsum (CaSOy4 - 2H,0) 0.336
Zincite (ZnO) 0.353
Bunsenite (NiO) 0.369
Celestite (SrSOy) 0.379

The dynamic elastic tests involve either (i) determination
of pulse velocities of longitudinal and shear waves in rock
specimens or (ii) measurement of resonance frequencies of
longitudinal and shear vibrations of bar or rod-like
cylindrical rock specimens [39,40,43]. It has been reported
that dynamic values of Poisson’s ratio are often prone to
considerable error [43].

In static tests by uniaxial compression for strength or
deformability of rock material, it is recommended that the
ratio of Young’s modulus to Poisson’s ratio (E/v) of the
platen material be close to that of the specimen to eliminate
undesirable end effects [47]. For steel, a commonly used
material as loading platen, the E/v ratio is close to 670; yet,
this value is generally larger than those of the rock types
commonly encountered. Although aluminum (E/v >~ 200)
and brass (E/v >~ 300) might provide a better match of E/v
ratio than steel, they can be easily damaged; for that
reason, hardened steel platens with the same diameter as
the test specimen are preferred [47].

Bieniawski, who studied the mechanism of brittle
fracture of rock material in detail [48,49], proposed the
criteria for identifying and separating the distinct phases of
the failure process. According to Bieniawski, in cylindrical
rock specimens under uniaxial compression, the variation
of circumferential or radial strains with the axial stress
starts to deviate from linearity at the transition from
“linear elastic deformation” phase to that of “‘stable crack
propagation.” In other words, Poisson’s ratio of the rock,
which is constant during the linear elastic deformation,
starts to increase due to initiation of new micro cracks or
extension of existing ones [49]. Years later, similar results
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Fig. 4. Typical ranges of values for Poisson’s ratio of some rock types
(data after [33,34,44-40]).

were obtained by more comprehensive studies [50].
Recently, Cai et al. [51] reported that, for a variety of
rocks, the ratio of the crack initiation stress level to the
uniaxial compressive strength fell in the range of 0.3 and
0.5 in uniaxial compression, and it varied between 0.36 and
0.6 in triaxial tests.

It has long been recognized that the nature of applied
stress influences the mechanical properties of rocks. Values
characterizing the uniaxial deformability (i.e. Young’s
modulus and Poisson’s ratio) of rock material are expected
to be different under compressive or tensile stress. The data
reported by Krech et al. [52] definitely establish such a
difference for Young’s modulus in some rock types (e.g.
granite, quartzite, sandstone, limestone, etc.). Similarly, the
study by Liao et al. [53] on transversely isotropic argillite
points out a somewhat less pronounced difference for
Poisson’s ratio. In addition, the values of elastic constants
determined from static and dynamic tests differ due to
some reasons (e.g. differences in applied stress or strain
levels). Some studies [54-56] even suggested empirical
relationships between static and dynamic Young’s moduli
of rocks. As far as Poisson’s ratio of intact rock is
concerned, there seems to be no conclusive evidence for
such relationships. As a matter of fact, with the possible
exception of porosity, there seems to be no meaningful
correlation between the values of Poisson’s ratio and any
other mechanical or physical property of rock material
[57,58]. Although one may anticipate that the porosity of
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rock material will play a role on the value of Poisson’s
ratio; however, the geometry (size and shape), orientation,
distribution, and connectivity of pores are expected to
complicate the influence. In this regard, the reader is
referred to Walsh [59], who studied the influence of
microstructure, especially porosity, on rock deformation.
Also, in poroelasticity applications of geomechanics, the
values of Poisson’s ratio in drained and undrained
conditions are required. It should be noted that undrained
values of Poisson’s ratio of rocks are larger than the
drained values [60,61].

As mentioned earlier, transverse isotropy is a common
feature of some sedimentary and metamorphic rocks with
well-developed bedding planes. According to the deform-
ability tests performed on intact rock materials, the values
of v; and v, are always smaller than 0.5 while v; may
assume values close to or larger than 0.5 [29]. In this
context, the results of a study [62] involving static
deformability of some coal measures are interesting and
given in Table 4.

Finally, some important points to be considered regard-
ing Poisson’s ratio of coals may be summarized as follows.

(1) As the carbon content of coal exceeds 90%, its

and those of the intact rock bounded by discontinuities. It
has also been well known that structural features induce
some degree of anisotropy in rock masses. For instance,
transverse isotropy is observed in a rock mass with
laminated fabric or one set of parallel discontinuities
whereas orthotropic rock masses could arise when three
mutually perpendicular sets of discontinuities with differ-
ent properties and/or frequencies are present [32].

For the elastic deformability of jointed rock, joint
normal stiffness (k,), joint shear stiffness (k;), and joint
spacing are among the most important properties [65,606].
Amadei and Savage [65] and Amadei [66], who treated
regularly jointed rock mass as an equivalent continuum
with directional deformability properties that reflected the
properties of intact rock and those of the joint sets,
presented elastic stress—strain relations for transversely
isotropic and orthotropic rock masses. They also gave
expressions for apparent modulus and Poisson’s ratios

Table 5
Poisson’s ratios of some coals encountered at Zonguldak hardcoal region,
Turkey [44-46]

dynamic elastic constants, including Poisson’s ratio,  Coal seam Poisson’s ratio
becomg )iF6c3r]easingly anisotropic (i.e. transversely (Colliery, sampling level) Tangent® Secant®
1sotropic .
(ii)) A value of v=0.346 was reported to be the  Acilik (Gelik, —150) 0.32 0.26
representative Poisson’s ratio for a wide range of coal Acun (Gelik, —50/—150) - 0.4
d [64] Akalin (Gelik, —150) 0.42 0.28
_ grades [64]. . . o , Buyuk (Kandilli, —300/—350) 0.34 0.28
(iii)) According to a series of investigations [44—46], in (Kandilli, —450) 0.29 0.23
which the static tests were carried out on laboratory Cay (Gelik, —150) 0.28 0.28
specimens loaded perpendicular to bedding, Poisson’s (Asma, —170) 0.48 0.49
ratios of some Turkish coals were found to be between (PfCImemlls7E)?el‘k’ —260/-360) 8'22 g?g
sma, — . .
0.15 and 0.49 (Table 5). Kurul (Asma, —50) 0.16 0.15
Nasufoglu (Asma, —200/—250) 0.29 0.28
Ozkan (Gelik, —360) 0.32 0.24
4.3. Poisson’s ratio of rock masses Sulu (Gelik, —260/—300) 0.30 0.17
Taban Acilik (Asma, —50) 0.30-0.48 0.24-0.38
. . Tavan Acilik (Asma, 150;—250 0.24-0.29 0.15-0.40
The behavior of rock masses are influenced by the ( )
mechanical behavior and properties of the discontinuities *Determined at 50% of uniaxial compressive strength.
Table 4
Poisson’s ratios of some transversely isotropic rocks encountered at Zonguldak hardcoal region, Turkey (data after Colak [62])
Rock type (related coal seam, sampling position) Poisson’s ratios®
vy Vo V3
Sandstone (fine-medium grained) (Acenta, roof rock) 0.241 0.299 0.339
Sandstone (fine-medium grained) (Acilik, floor rock) 0.208 0.292 0.363
Sandstone (medium grained) (Buyuk, roof rock) 0.217 0.322 0.364
Sandstone (fine grained) (Cay, floor rock) 0.173 0.274 0.411
Sandstone (medium grained) (Cay, roof rock) 0.263 0.243 0.393
Sandstone (medium grained) (Domuzcu, floor rock II) 0.261 0.283 0.325
Claystone (Domuzcu, floor rock I) 0.281 0.363 0.482
Siltstone (Nasufoglu, roof rock) 0.231 0.287 0.515
Siltstone (Sulu, roof rock) 0.218 0.318 0.364

“Defined in Fig. 2.
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of regularly jointed rock masses and showed that their
values converged to those of an intact isotropic medium
when the joint spacings or joint stiffnesses approached
infinity.

There have also been some numerical studies to predict
the value of Poisson’s ratio for jointed rock masses [67-71].
In the majority of cases, the value of Poisson’s ratio for the
rock mass was larger than the value for the intact rock, and
sometimes, unusually high values (v>0.5) were obtained
[67-70], indicating the anisotropy induced by the joints. In
a recent study, Min and Jing [69,70] investigated the
deformability of a two dimensional, randomly jointed rock
mass model by a hybrid technique. In the study, the
discrete fracture network approach was used to build up
the model of fracture systems while a distinct element code
was used for the numerical stress analysis. The analyses
revealed that the value of Poisson’s ratio for the rock mass
was stress dependent and sensitive to the ratio of
shear stiffness to normal stiffness of joints (ki/k,). In
another study by Kulatilake et al. [71], rock fracture data
belonging to a certain site were used to build up a three-
dimensional stochastic fracture network model for a 30-m
cube of jointed diorite, and a procedure involving a three-
dimensional distinct element code was developed to
estimate the strength and deformability of such a “virtual
rock mass.” The value of Poisson’s ratio for the rock mass
was found to be about 20% higher than the value for the
intact rock.

Among the in situ tests to determine the deformability of
rock mass, some require a prior knowledge or estimation of
the value of Poisson’s ratio while some others are used for
direct determination of Poisson’s ratio along with the rock
mass modulus. In borehole expansion tests involving
flexible dilatometers or stiff borehole jacks (e.g. Goodman
jack), the value of Poisson’s ratio for the rock surrounding
the measurement section is assumed in order to determine
the in situ deformation modulus. In the case of borehole
jacking test, a specific coefficient that depends on the rock
mass Poisson’s ratio is used for calculation of the modulus
of deformation [29,72].

For in situ determination of Poisson’s ratio of a rock
mass, several methods are available and, depending on the
method, the volume of rock mass involved ranges from a
fraction of a cubic meter to a significantly large volume.
For this purpose, Lu [73] proposed a method that
employed cylindrical and flat hydraulic borehole pressure
cells developed by the USBM, and he presented results of
measurements carried out in a coal seam. Detailed
information is available [74] on the equipment, technique,
and theories for the hydraulic borehole pressure cells that
can also be used for determination of premining and
mining-induced pressures and/or pressure changes.

Another possibility for in situ determination of rock
mass Poisson’s ratio is to use large flat jacks. Special
procedures involving biaxial and triaxial flat jack tests were
presented for determining the elastic constants of schistose
rock masses with transverse isotropy [29].

Table 6
Typical ranges of values of Poisson’s ratio for granular soils [81]

Soil type Poisson’s ratio
Loose sand 0.20-0.40
Medium dense sand 0.25-0.40
Dense sand 0.30-0.45

Silty sand 0.20-0.40
Sand and gravel 0.15-0.35
Saturated cohesive soils ~0.50

Boyle [75], who criticized the ISRM-suggested plate
loading test [76] that required Poisson’s ratio of the rock
mass to be a known value, recommended an alternative
numerical computation method to determine the value of
Poisson’s ratio along with the deformation modulus. Based
on this recommendation, Unal [77], presented information
on the test set-up, testing procedure, and derivation of
formulas for a new approach developed for determining in
situ deformability of rock masses.

Compared to the methods employing borehole pressure
cells, large flat jacks, and plate loading; the dynamic in situ
tests, in which the seismic velocities are measured, may be
the only alternative for determining the value of Poisson’s
ratio for very large volumes of rock masses.

As it has also been shown in some studies [78-80], the
rock mass deformation modulus (E,) can be empirically
correlated to the intact rock modulus (E;). Unfortunately,
there seems to be no such correlation between the values of
Poisson’s ratio for rock mass (v,,) and intact rock (v;). Yet,
theoretically, the intact rock (i.e. matrix) value constitutes
a limit for the values that may be assumed by the jointed
rock mass.

Finally, for the sake of completeness, typical ranges of
values of Poisson’s ratio for granular soils are given in
Table 6.

4.4. Poisson’s ratio in rock engineering

In rock mechanics and rock engineering, Poisson’s ratio
deserves a special consideration in many respects. In the
preceding sections, its role and employment in some in situ
tests are mentioned. Though not exhaustive, following are
some additional areas in which the significance or influence
of Poisson’s ratio is appreciated.

Poisson’s ratio of the medium influences the distribution
of stresses in some three-dimensional solutions that are
widely applied to geomechanics problems. Following are
the important examples of such fundamental solutions
[82,83]:

(i) point load acting in the interior of an infinite elastic
body (Kelvin’s problem),
(i1) point load acting normal to the surface of an elastic
half space (Boussinesq’s problem),
(iii) point load acting tangential to the surface of an elastic
half space (Cerruti’s problem), and
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(iv) vertical or horizontal point load acting in the interior
of an elastic half space with a horizontal surface
(Mindlin’s problems).

As one of many practical applications of the fundamental
solutions, an integrated form of Boussinesq’s problem is
illustrated in Fig. 5. It shows the variation of stresses
occurring along the centerline of a uniformly loaded
circular area located on the surface of an elastic half space.
The effect of Poisson’s ratio is noticeable on the induced
horizontal stresses (o},) while the induced vertical stress (o)
is independent of the elastic properties of the medium.

In rock engineering applications involving underground
openings, Poisson’s ratio of the rock mass is utilized for
estimating in situ stresses and in expressions involving
induced stresses. For example, in an approach that was
attributed to Terzaghi and Richart [85] but had been used
earlier by Mindlin [86], the ratio of horizontal in situ stress
(Pn) to the vertical component (Py) in geologically
undisturbed sedimentary regions is as follows:

Pyn/P, =v/(1 — ). (7)

Similarly, in transversely isotropic rock masses with
horizontal bedding planes, Eq. (7) becomes [29,37,87]:

Py/Py =[v2/(1 = v)(E1/E>), (8)

where vy, v,, E;, and E, are defined in Fig. 2. Amadei and
Pan [87] also presented comparable expressions for ortho-

Normalized stress, o/P
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Fig. 5. Variation of the vertical (¢,) and horizontal (o},) stresses occurring
along the centerline of a uniformly loaded circular area located on the
surface of an elastic half space (modified after [84]).

tropic rock masses. In addition, Sheorey et al. [88] proposed
the following expression for estimating Py, (in MPa):

Py = [vPy + BG,E(H + 1000)]/(1 — v), )

where P, and E (Young’s modulus) are in MPa, § (°C™") is
the coefficient of linear thermal expansion, G, (°C/m) is
geothermal gradient, and H(m) is depth of cover. Obviously,
for the estimation of Py, there are other approaches [37] that
do not involve Poisson’s ratio of the rock mass. Also, Egs.
(7) to (9) are not valid when the assumptions made in their
derivation are violated.

In the analytical solutions for stresses around under-
ground openings, the following points are worth mention-
ing regarding the influence of Poisson’s ratio.

(1) In plane-strain solutions that ignore body forces, only
the axial (longitudinal) stress component (¢.) involves
Poisson’s ratio:

0. = P.+v[o, + 09— (Py+ P, (10)

where P, is the principal in situ stress parallel to the
longitudinal axis of opening, ¢, and oy are radial and
tangential stresses, respectively, occurring around the
opening.

(i1) In the plane-strain solutions that include body forces,
Poisson’s ratio of the surrounding rock affects the
stresses occurring around the opening. In this respect,
the solution by Mindlin [86] for a horizontal circular
tunnel located in a semi-infinite elastic solid under the
action of gravity and Savin’s solution [89] for
distribution of stresses around a circular hole in an
infinite heavy elastic plate are two relevant examples.
In these solutions, the influence of Poisson’s ratio is
more pronounced on the opening boundary and at
shallow depths. In Fig. 6, the variation of tangential
stress occurring at the crown of a shallow circular
tunnel is shown as a function of depth. It is obtained
by using the generalized form of Mindlin’s solution
given by Gercek [90]. The results for a shallow tunnel
are also compared with the Kirsch solution [91] for a
circular tunnel located at great depth (Fig. 6).

(iii) Solutions involving three-dimensional (e.g. spherical,
spheroidal, or ellipsoidal) openings include Poisson’s
ratio. For example, the expression for the radial stress
occurring at a point around a spherical opening
subjected to vertical in situ stress (P,) is a striking
example, and it is as follows [92]:

a, = P{[14 — 10v — (38 — 10v)(a/r)’ + 24(a/r)*] +[10v — 14
+ (50 — 10v)(a/r)* — 36(a/r)’]sin*0} /(14 — 10v),
(11

where « is the radius of spherical opening, r is the distance
to the center of opening, and 0 is the angle between radial
and vertical directions.

Some geomechanics problems with no mathematical
solutions are commonly studied by numerical stress
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Fig. 6. Effect of Poisson’s ratio of the medium on the tangential stresses
occurring at the crown of a shallow circular tunnel.

analysis. The distribution of stresses and displacements
occurring around the advancing face of a tunnel is an
interesting example of such problems. It has been shown by
a numerical study that Poisson’s ratio of the surrounding
medium influences the normalized elastic radial displace-
ments occurring around the excavation face of a circular
tunnel located in a hydrostatic in situ stress field [93]. This
influence is illustrated in Fig. 7 for the normalized elastic
pre-deformation, the ratio of radial displacement occurring
at the face to that occurs far behind the face (i.e. u,/ute). In
a similar problem, the influence of Poisson’s ratio was
noted on the stress concentrations around the bottom of a
borehole and core-disking phenomenon [94].

5. Recommendations for classification

During the preparation of this review, it was noticed that
there was not any Poisson’s ratio classification for rocks
although a number of classifications existed about some
mechanical, physical and index properties of intact rocks.
For example; those involving the uniaxial compressive
strength (o) [95-101], Young’s modulus (E) [99], cohesion
(¢) [102], unit weight (y) [103], point load strength index
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Fig. 7. Variation of the normalized elastic pre-deformation with the value
of Poisson’s ratio for a circular tunnel located in a hydrostatic in situ stress
field [93].

(Zs(s0y) [104,105], slake durability index (/4) [106,107], block
punch index (BPI) [108], modulus ratio (E/o¢;) [96,109],
and point load strength anisotropy index (/,(so)) [110] show
the diversity of classifications for intact rock. Poisson’s
ratio is no less significant than some of the intact rock
properties for which classifications have been proposed. In
fact, a Poisson’s ratio classification can be useful for a
qualitative assessment of laboratory test result.

For classification of intact rocks based on their Poisson’s
ratio, two practical alternatives may be considered since
the theoretical upper limit is 0.5 and there seems to be an
observed lower limit of zero. In the first alternative with
five categories (i.e. very low, low, medium, high, and very
high), it is suggested that a range of 0.1 be chosen for each
category (Table 7). In the second one with three categories
(i.e. low, medium, and high), a range of 1/6 is recom-
mended for each category (Table 8). It should be noted that
these classifications are applicable to isotropic rocks only,
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Table 7
Recommendation for a Poisson’s ratio classification with five categories

Category Poisson’s ratio
Very low 0<v<0.1
Low 0.1<v<0.2
Medium 0.2<v<0.3
High 03<v<04
Very high 0.4<v<0.5
Table 8

Recommendation for a Poisson’s ratio classification with three categories

Category Poisson’s ratio
Low o<v<l1/6
Medium 1/6<v<1/3
High 1/3<v<1/2

and if, by any chance, a negative value of Poisson’s ratio is
measured for a rock type, it has to be called “auxetic rock”
in either of the classifications.

The merit of considering equal ranges for the categories
may be questioned since the categories chosen for
classifications involving uniaxial compressive strength,
Young’s modulus, etc. do not have equal ranges. However,
it should be recalled that, unlike Poisson’s ratio, those
mechanical properties do not have a definite upper limit.
Also, when there is not any upper limit, it has been
customary to divide the possible range nonlinearly.
Actually, in this paper, the main reason for recommending
categories with equal ranges is that it is simple and easy to
remember. Finally, it is hoped that these recommendations
do not create a situation similar to the inconsistency that
exists among the classifications for uniaxial compressive
strength [111].

6. Conclusions

Poisson’s ratio is an interesting mechanical property of
elastic solids. Its significance in mechanics and rock
engineering applications is much greater than that is
implied by the narrow range of values it usually assumes.
The data compiled in the paper can be used in engineering
applications which require an estimation of Poisson’s ratio.
Also, the classifications recommended for Poisson’s ratio
of rocks are simple and easy to remember, and they can be
utilized for qualitative grouping of quantitative test data.
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