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Abstract

A simple numerical procedure for calculating the distribution of stresses and radial displacements around a circular tunnel excavated
in a strain-softening Mohr—Coulomb or generalized Hoek—Brown rock mass is proposed. The problem is considered as axisymmetric, i.e.
the initial stress state is assumed to be hydrostatic and the rock mass is said to be isotropic. By invoking the finite difference approxi-
mation of the equilibrium and compatibility equations, the increments of stresses and strains for each ring, starting from the outmost one
for which boundary conditions are known a priori, are calculated in a successive manner. In the proposed approach, the potential plastic
zone is divided into a finite number of concentric rings whose thicknesses are determined internally to satisfy the equilibrium equation.
For the strain-softening behavior, it is assumed that all the strength parameters are a linear function of deviatoric plastic strain. Several
illustrative examples are given to demonstrate the performance of the proposed method. For the brittle-plastic case, the results show a
very good agreement with the closed-form solution. For strain-softening cases, the predictions by the proposed method are also in good
agreement with the known rigorous numerical solutions. It is shown that the approximate solution converges to the exact solution when
the increment of stress for each ring becomes smaller. The influence of the strength parameter ‘a’, appearing in the generalized Hoek—
Brown criterion, on the elasto-plastic solutions is examined through the establishment of ground reaction curves and the discussion for
the locations of the plastic radii.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Analysis of stresses and displacements around circular
opening excavated in isotropic rock masses has been one
of the fundamental problems in geotechnical engineering.
Provided that the initial stress field is hydrostatic, the prob-
lem may be regarded as axisymmetric and an analytical
solution can be found. This solution is useful in various sit-
uations that include the validation of constitutive models,
the stability assessments of circular openings such as bore-
hole and TBM excavated tunnel, the verification of numer-
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ical codes, the construction of ground-support reaction
curves, etc. In general, a reliable solution requires a nonlin-
ear approach, because the deformation response depends
on the stress path. According to the existing literature sur-
veys (Brown et al., 1983; Alonso et al., 2003), elasto-plastic
approaches seem to be most popular.

In the past, Mohr-Coulomb (M-C) yield criterion was
the most common in the elasto-plastic analysis of rock
mass, due to its simplicity. However, experimental observa-
tions show that the strength envelope for most of rock-like
materials is not linear. Among the nonlinear yield criteria,
the criterion by Hoek and Brown (1980) is widely accepted
in rock mechanics community, as it provides a reliable tool
for predicting the strength of jointed rock mass. Recently
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Hoek—Brown (H-B) criterion has been updated to the gen-
eralized form (Hoek et al., 2002), in which the strength
parameter ‘@’ is no longer constant and can vary from
0.5 for the excellent rock mass having GSI =100 to 0.6
for the very poor rock mass of GSI = 10.

Elasto-plastic analysis of circular tunnels excavated in
H-B or M-C media was attempted by many researchers.
Although a number of closed-form solutions are available,
each solution is approximate, in the sense that it incorpo-
rates various simplifying assumptions. For elastic—brittle—
plastic case, Brown et al. (1983) presented the closed-form
solution for stress and radial displacement in the plastic
zone. However, they did not consider the variation of elas-
tic strain, so that the influence of the unloading in the plas-
tic zone is not taken into account. In addition, Brown
et al.’s solution has a defect in predicting the plastic radius
as pointed out by Wang (1996). Recently, improved solu-
tions were provided by several authors. While Carranza-
Torres and Fairhurst (1999) solution for H-B rock mass,
which is based on the so-called self-similarity of H-B crite-
rion, is theoretically rigorous, it seems rather complicated
for practical use and it is applicable only to the elastic—per-
fectly plastic case. An analytical solution for H-B rock
mass given by Sharan (2003) is also not exact in calculating
displacements in plastic zone, as it assumes that the elastic
strain field in the plastic zone is the same as that of thick-
wall cylinder problem (Timoshenko and Goodier, 1982).
On the other hand, solutions by Park and Kim (2006)
and Carranza-Torres (2004) give an exact expression for
displacement in the plastic zone. However, even for elas-
tic-brittle—plastic behavior of H-B rock mass, there is no
closed-form solution if the strength parameter ‘@’ is not
equal to 0.5.

Most of elasto-plastic solutions mentioned above are
relevant to elastic—perfectly plastic or elastic-brittle—plastic
material. For strain-softening rock masses the attempts at
elasto-plastic analysis are limited (cf. Brown et al., 1983;
Duncan Fama et al., 1995; Alonso et al., 2003; Guan
et al., 2007). This may be due to the difficulty in defining
the material behavior and in obtaining the closed-form
solutions. Although Brown et al. (1983) obtained the
ground reaction curve (GRC) for a circular tunnel in a
strain-softening H-B rock mass, it underestimated the con-
vergence by neglecting the variation of elastic strain in
plastic zone. On the other hand, the methodology followed
by Alonso et al. (2003) for obtaining GRC for stain-soft-
ening rock masses is sound from a theoretical point of
view; it seems however too complex for practical use.
Guan et al. (2007) compared the radial displacements from
the rigorous methods (Alonso et al., 2003) with those from
the simplified method (Brown et al., 1983) and reported
that, when Brown et al.’s method is used, the prediction
error in the radial displacement is in the range of 20—
40%. Those current rigorous solutions for the strain-soft-
ening behavior, however, are doubtful whether they are
practical, because they require solving rather complicated
second order differential equations (Carranza-Torres,

1998; Guan et al., 2007) or a system of differential equa-
tions (Alonso et al., 2003).

This paper proposes a simple and practical numerical
procedure to calculate the distribution of displacements
and stresses around circular opening excavated in isotro-
pic strain softening rock masses. The discussion of this
paper is restricted to the stable basic solution in the
strain-softening zone, so the topics concerning the instabil-
ity such as bifurcation and strain localization in the strain-
softening regime (Varas et al., 2005) is not addressed. The
proposed model is formulated in a unified manner to
accommodate both the M-C and generalized H-B rock
masses. By assuming that initial stress field is hydrostatic,
the analysis simplifies to axisymmetric conditions. In the
post-failure state, all the strength parameters are assumed
to be a function of deviatoric plastic strain and to decrease
linearly to the residual values. In the model, the plastic
strains are calculated incrementally and the plastic flow
rule can be associated or non-associated. The potential
plastic zone is subdivided into a sufficiently large number
of concentric annuli whose thicknesses are not uniform
but determined internally to comply with the equilibrium
equation. Since the radial stress, which is a minor princi-
pal stress for this axisymmetric problem, is known on
both the elastic—plastic interface and the excavation
boundary, the increments of plastic strains are obtained
successively through finite difference approximation of
equilibrium and compatibility equations in each plastic
ring, starting from the outmost one. The validity and
potential for practical use of the proposed method is dem-
onstrated through a number of illustrative examples. Since
elastic-brittle—plastic cases are special cases of strain-soft-
ening behavior and many closed-form solutions exist,
some elastic-brittle—plastic solutions are compared with
the results form the proposed method. Some published
rigorous strain-softening solutions are also reproduced
by use of the proposed method to demonstrate the validity
of the model.

2. Definition of problem

Fig. 1 shows a circular tunnel of radius » excavated in an
infinite isotropic rock mass. Here, a hydrostatic stress field
g 1s imposed throughout the domain before the excavation
takes place. When the internal support pressure p; is lower
than a critical value p;., a plastic zone may be formed
around the opening. In the case of elastic—brittle—plastic
or elastic—perfectly plastic behavior, it is possible to derive
an explicit expression for the plastic radius R, (Carranza-
Torres and Fairhurst, 1999; Park and Kim, 2006). On the
other hand, if strain-softening behavior is considered, the
plastic zone may be divided into softening and residual
zones by an interface whose radius is denoted by R,, shown
in Fig. 1. In this case, no closed-form solution is available
and the plastic/softening radius, as well as the distributions
of stresses and displacements in plastic zone, should be
assessed numerically.
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Fig. 1. Plastic zone formed around circular opening.

2.1. Yield function

It is assumed that the yielding of the rock mass is gov-
erned by the yielding function,

F(O-OaaraVP) = O-()_O-r_H(O-ran) (1)
where ¢y and o, are the major and minor principal stresses,
respectively, whereas 7P is the strain-softening parameter
controlling the evolution of the strength parameters in

the strain-softening regime and defined as the following
deviatoric plastic strain:

=75 (2)
Although there is no universal way of defining the strain-
softening parameter as pointed out by Alonso et al.
(2003), the definition of Eq. (2) is most widely accepted.
For M-C rock mass, H in Eq. (1) becomes

HY(0,,7%) = (N(4") = D)o, + Y(;") (3)
where N and Y are strength parameters defined in terms of
friction angle ¢(yP) and cohesion ¢(yP);

_ 1+sing(y®) Y(;7) = 2¢(y°) cos (")
1 —sing(yr)’ 7T sin B(yP)

On the other hand, if the generalized H-B yield function is
assumed, H can be expressed as

" a(r?)
H"(6,.79) = 0.(%) <m(v") o s(v")) 5)

where o, is the uniaxial compressive strength of rock, and
m, s, and a are the strength parameters of H-B criterion.

N (4)

2.2. Plastic potential function

Here, Mohr—Coulomb type of criterion is selected as a
plastic potential function, so that the plastic potential func-
tion may be written as

G(a9,0,,7") = 09 — k(7*)0, (6)
where k(yP) is known as the coefficient of dilation and de-
fined as
1 P
k) = o olr) ™)
—sin @(P)

¢ in Eq. (7) is so-called angle of dilation. When ¢ is equal
to internal frictional angle ¢ of rock, the plastic flow rule is
associated. If k(y®) = 1.0, no plastic volume change takes
place during yielding.

Then the plastic flow rule gives the following relation
between the radial and circumferential plastic strain
increments:

dey = —k(;7) de (®)

2.3. Evolution of strength parameters

It should be noted that each strength parameter appear-
ing in Egs. (3), (5) and (6) is a function of yP. In plastic
regime, it is assumed that those parameters can be
described by bilinear functions of deviatoric plastic strain
yP as shown in Fig. 2,

_ _ » P~ P
w(;7) = {wp (@ =)y, 07 =7 9)

o, =P

where o represents one of ¢, ¢, o., m, s, @ and a. 7" is the
critical deviatoric plastic strain from which the residual
behavior starts and should be identified by experiments.
While different 7P may be assigned for each parameter pro-
vided that the experimental data are available, here for sim-
plicity single value of y*" is assumed for each medium. The
subscripts ‘p’ and ‘r’ denote the peak and residual values,
respectively. It should be noted that in general a. > a,
for the parameter a of Eq. (5). If ** = oo, the elastic—per-
fectly plastic model is retrieved, whereas Eq. (9) reduces to
the elastic-brittle plastic model provided that w, # w, and
no softening behavior is allowed.

2.4. Critical supporting pressure, p;.

The plastic zone around the circular opening is formed
only when the internal support pressure p; is lower than a

h

o

Strength parameters, ®

Softening Residual

0 v

Fig. 2. Evolution of strength parameters in plastic regime.
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critical value p;.. For M—C rock mass, p;. can be calculated
by use of the peak strength parameters and the initial stress
go (Brady and Brown, 1993),

MC_ZGO_ Yp

Pic = N, i1 (10)
where Y, = 2¢, cos ¢,/(1 — sin ¢,) and N, = (1 + sin ¢,,)/
(1 — sin ¢p).

For H-B rock mass, p;. can be obtained by solving the
following nonlinear equation:

2 _ piC o
(00 — Pic) = 0p mpo__+sp (11)
cp

The analytical expression for p;. is available only when
a, = 0.5 (Carranza-Torres and Fairhurst, 1999; Park and
Kim, 2006), which is

1
pi}cIB =5 (ﬁ— \/ﬁZ + 4Bay +spo'gp> + o9 (12)

where f = (mpocp)/4. If a, > 0.5, pi® can be found numer-
ically by use of suitable root-finding algorithm such as
Newton—-Raphson method (Press et al., 1992).

It should be noted that when the plastic zone is formed,
the radial stress o, acting on the elastic—plastic interface
(see Fig. 1), is equal to pj;

or = 0,(Ry) = pic (13)

It is interesting to note that oy is independent of radius r.
3. Approximation of strain-softening behavior
3.1. Preliminaries

It is assumed that the plastic zone is composed of n con-

centric annuli as shown in Fig. 3, where ith annulus is
bounded by two circles of normalized radii p;_1) = r_1)/

Fig. 3. Normalized plastic zone with finite number of annuli.

R, and p; =r/R,. Here, it should be noted that the
thickness of each annulus is not equal in general because
it is determined automatically during the numerical process
to satisfy the equilibrium condition as explained later in
this section.

On the outer boundary of plastic zone, where p) =1,
stress and strain components under plane strain condition
are given as (Brown et al., 1983),

fo = on ) a9

G0(0) 209 — op

{Sr(O)}1+V{GR—O'o} (15)
€0(0) E 0y — OR

where v is Poisson’s ratio and E is Young’s modulus.

3.2. Increments of stresses and elastic strains

Here, the drawback in Brown et al.’s (1983) method,
where the simplified assumption for the distribution of
elastic strain is made, is overcome by noting the fact that
o, on both inner and outer boundaries of the plastic zone
are known a priori and o, decreases monotonically from
or at r =R, to p; at r =b. We can take the radial stress
Increment

Ag, =P Ok (16)
n
so that the stress components for ith radius may be approx-

imated as
9r() = O(i-1) + Ad, (17)

Here, again, it should be noted that, although the constant
increment of Ag, is assumed for each annulus, the actual
thickness of the annuli is not constant because the radii
of annuli are to be determined to satisfy the equilibrium
equation (see Eq. 24).

For a sufficiently large n, the corresponding hoop stress
is given by

oo = o) + H(0r0), 7)) (18)
where H is defined in Eq. (3) or Eq. (5).

Thus,
Aoy = o0 — Tog-1) (19)

Elastic strain increments can be related to the stress incre-
ments using Hooke’s law. Under plane strain condition,
there is

A& 1 1- - Ao,
o b1ty [ v H o } (20)
AS(}([) E -V 1—v AO’()(,-)
3.3. Approximation of displacements
Provided that the number of annuli n is sufficiently

large, the equilibrium equation expressed with respect to
the normalized radius p = r/R,,
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do, o0,—o0y

0 21
p 5 (1)
or
do, H(a,, 7"
Or (,,7") —0 (22)
dp P
may be approximated for the ith annulus as
N = Oui 2H (G, (-
Or(i) = Ori=1) () 7 1)) —0 (23)
Py — Pl P+ Pi-1

where 6,y = (0,¢) + 0,4-1))/2.
The normalized inner radius pg =ru/R, is then
expressed explicitly as

2H(G,4), (1)) + Ao,

Pu = — Pi-
O = 2H (G0 7,) — Ao, P

In order to calculate the plastic strain increments, the dis-
placement compatibility equation can be evoked. Since
the strain components are related to the radial displace-
ment u by

(24)

%, gy = % (25)
the compatibility equation can be stated as (Florence and
Schwer, 1978)

dey & — e,
dp ' p

In the plastic zone, the total strains can be decomposed
into elastic and plastic parts as follows:

Loy La) ) @

so that Eq. (26) can be reformulated as

& =

=0 (26)

def eh—ef _ _def -4 (28)
dp p dp p

or

dej eh—ef  de§ 14+vH(o,7") (29)

Approximating the differential equation (29) with respect
to p and rearranging for Asfj(i) gives, in view of Egs. (8),
(20) and (24),

1 1
—+ (1 + k1)) =— | Aep,
(AP(;) ( ) P(z‘)) o)

Ay (1) HEw:75) 1 (1) = )
Ap; E P P \06=D) T Frli=1)

(30)

where py = (pi_1) +p)/2 and k1) = (1 +sin ¢_1))/
(I — sin ¢;_1)). Corresponding Asf’@ is then given by Eq.
(8). The deviatoric plastic shear strain is updated as

M = Voo T+ (Aeh, — Agl,) (31)

Now, the total strain at ith annulus is obtained as

Er(i Eri Ae, Al
{ <>}:{ ( 1)}Jr o Ly g (32)
€0(i) &o(i-1) Agg) Agy,
Recalling the relation &y = u/r, the displacement normalized
by plastic radius R, may be calculated using the relation,

Uy = o)) (33)

where (](l') = M(l')/Rp.

If the procedure explained in above Sections 3.1 and 3.3
can be repeated n times, the last o,(;, i.e. 6,(,), reaches the
internal support pressure value p; which is acting on the
excavation surface of the opening with radius b. The plastic
radius R, can be obtained from the following relation:

b
R, =— (34)
’ P

Then, the radial displacement at each location can be cal-
culated from the normalized radial displacement U;, Eq.
(33), as

up = UpRyp (35)

According to the procedure explained, it is evident that the
solution will converge to the exact solution by increasing
the division number n. The sequence of calculations is sum-
marized in Appendix A.

Although the proposed finite difference approximate
scheme looks similar to that from Brown et al. (1983),
the procedure is completely different from Brown et al.’s
at the following points of view:

e In Brown et al.’s, they assume that the elastic strain is
uniform and constant over the plastic zone and calculate
0.y Eri)» P(i)» Or(ip» And o in that order after selecting
an arbitrary small value for Asg(i) in each step. Due to
this simplified assumption on the distribution of elastic
strain in the plastic zone, their procedure underestimates
the displacement field around an opening. On the con-
trary, our approach starts each step with Ag,, then
Oriy» Ooiy Py Eo(» and &, are updated successively, so
that the calculation in each step proceeds in reverse
order of Brown et al.’s. Since the small stress increment
for each annulus is assumed first, our approach calcu-
lates the increment of elastic strain for the annulus cor-
rectly by use of Hooke’s law. Furthermore the increment
of plastic strain is also calculated correctly by invoking
the compatibility relation.

e While p; in Brown et al.’s is calculated through the finite
difference approximation of the strain—displacement
relation, p; in this study is determined by the finite differ-
ence approximation of the stress equilibrium equation.

e While Brown et al. employed &} as a softening parameter
that control the evolution of the strength parameters,
our procedure selects the deviatoric plastic strain,
(¢) —¢P), as the softening parameter which is more
widely accepted.
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e Mohr-Coulomb and Hoek—Brown criteria are consid-
ered in a single framework of approximation.

e The generalized Hoek—Brown criterion is taken into
account in our approach.

4. Verification examples
4.1. Verifications for H-B rock mass

4.1.1. Elastic—brittle-plastic behavior for Hoek—Brown rock
mass with a, = a, = 0.5

To investigate how the results are influenced by the mag-
nitude of Ac, in Eq. (16), i.e. the number of annuli #n, an
elastic-brittle—plastic analysis was performed for which
closed-form or numerical solutions are available, e.g. Park
and Kim (2006) or Carranza-Torres (2004).

One of the data sets appearing in Sharan (2003) was
taken as input data: b =5m, go=30 MPa, p; =5 MPa,
E=55GPa, v=0.25 o0 =0,=30MPa, m,=17,
sp = 0.0039, m, = 1.0, s, = 0.0, a, = a, = 0.5. Two dilation
angles, ¢, = 0° and 30°, were considered in order to exam-
ine the influence of plastic volume change. Five values of n
considered in this example are 20, 50, 100, 200 and 500.

In Fig. 4, percentage errors occurring in the course of
approximating radial displacements u are plotted against
the normalized radius r/b in the plastic zone. Prediction
errors arising from Sharan’s (2003) approximation formula
are also plotted for the purpose of comparison. In this case,
it was calculated that r/b=1.885 at the elastic-plastic
interface. The positive errors can be justified when consid-
ering the fact that the explicit scheme is used in approxi-
mating the strength parameters. It is evident from the
figure that the larger the value of n, the better the approx-
imation. Even though a general guideline for selecting suit-
able 7 is not available, it seems that choosing # in the range
of hundreds can give a very accurate prediction of radial
displacements.

For n=>500, (¢ — tlexact)/Uexact 18 only 0.225% on the
excavation surface, at /b = 1.0, when the rock is non-dilat-
ant (¢, = 0°). However, the corresponding value increases
to 0.721% when ¢, = 30°. This trend also prevails for smal-
ler values of n, Fig. 4. Thus, the results suggest that the
dilatancy effect may decrease the approximation accuracy
of u and larger value of n should be used for dilating rock
masses. For non-dilating rock, Fig. 4a shows that while
Sharan’s approximating formula gives the exact values of
radial displacements at the excavation surface and at the
elastic—plastic interface, the error is increased toward the
interior points. For dilating rock, however, the error
occurred even at the excavation surface. Although Sharan
(2003) concluded that the error is maximum at the bound-
ary of the opening, his conclusion might not be correct
when considering Fig. 4b, where the maximum error occurs
at an interior point of the plastic zone.

As can be seen in Fig. 5a, the distributions of stress for
n =500 shows good agreement with the exact solutions.

a o6
5 —
| Sharan(2003)
g\/ 4 - e ~
8 r \
5
2
g
?d)
=)
b 24

(u_uexact)/ Uexact (%)

Fig. 4. Approximation errors in radial displacements for a circular
opening excavated in Hoek-Brown rock mass; b =5m, g, = 30 MPa,
pi=5MPa, E=55GPa, v=025 o,=0,=30MPa, m,=17,
$p=0.0039, m, = 1.0, 5, = 0.0, a, = a, = 0.5: (a) ¢, = 0° (b) @, =30°.

The radial displacements for n = 500 are also plotted and
compared with the exact ones in Fig. 5b along with those
predicted by Brown et al. (1983) and Sharan (2003). The
distribution of radial displacements calculated using the
proposed methodology again shows a very good agreement
with the exact solution, while Sharan’s approximation is
overestimating the displacements and Brown et al.’s
(1983) is underestimating the displacements.

4.1.2. Generalized Hoek—Brown rock mass

An elastic-brittle—plastic solution for the axisymmetric
problem of a circular tunnel excavated in a generalized
Hoek—Brown rock mass can be found in Carranza-Torres
(2004), in which the solution is based on a self-similar for-
mulation for the problem. In his formulation, the numeri-
cal integration of the second order differential equation is
required to get the solution if a, # 0.5 and a, # 0.5. Here,
the example problem appearing in Carranza-Torres
(2004) is solved by use of the proposed method and both
the results have been compared. In addition, the strain-
softening solutions by the proposed method for three dif-
ferent yP are also investigated.

Fig. 6 shows the distributions of radial displacement and
stresses calculated by both approaches and also shows the
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Stress (MPa)

——6&—— This study(n=500)

a

25

20

wn

T T T

(1) : brittle-plastic
(2) :yP*= 4e-3
(3) : yP"'= 8e-3
(4) :yP*=12¢-3

A — — - — — Exact
0 P B B 1 [
1.0 1.5 2.0 2.5 3.0 35 4.0
r/b

0.25

P — — © — — This study (n=500)
0.20 —  Exact

— — <% — — Sharan(2003)

0.15 & — — A — — Brown etal. (1983)

Radial displacement, u (m) T

1.0 1.5 2.0 2.5 3.0 3.5 4.0
/b

Fig. 5. Comparison of elastic-brittle-plastic solutions for Hoek-Brown
rock mass with ¢, = 30°. Other input data are the same as in Fig. 4: (a)
radial and hoop stresses; (b) radial displacements.

input parameters for this problem. It should be noted that
a, (=0.6) is larger than a, (=0.5). For the brittle-plastic
case, nearly perfect matching can be seen. It is apparent
that the strain-softening solution converges to the brittle—
plastic solution when the critical deviatoric plastic strain
7" becomes smaller, which confirms the validity of the pro-
posed method for the generalized Hoek—Brown medium.
The critical support pressure p;. was calculated numerically
as 6.3785 MPa. The plastic radius R, is the largest (3.28 m)
when the behavior is brittle—plastic, and decreases with
increasing y? . The softening-residual interface R, contracts
as well with y*". For y*" = 12e — 3, the whole plastic zone is
strain-softening, i.e., no residual plastic zone is formed.
The radial displacement shows the same tendency, so that
it is maximum when the rock mass is brittle-plastic and
lessens with P,

Consequently, these results indicate that taking strain-
softening behavior into account yields a smaller plastic
zone compared to the brittle-plastic case; also, the strain-
softening behavior results in a smaller plastic radius.

4.2. Verifications for Mohr—Coulomb rock mass
4.2.1. Elastic-brittle-plastic behavior

As in the verification problem for Hoek—Brown rock
mass, five values of n are chosen to demonstrate how the

Stress (MPa)

(=}

This study (n=500)
® Carranza-Torres (2004)

This study (n=500)
® Carranza-Torres (2004)

b=2m

v=0.3, E=5700 MPa

6,=15.0 MPa

p=2.5 MPa i
G.,=30.0 MPa, 6.,=25.0 MPa
m,=1.7, m=0.85

sp:3.9e-3, s=1.9¢-3

Yp=y=0°

ap=0.55, a=0.6 n

brittle-plastic

Radial displacement , u (mm)

/b

Fig. 6. Elastic-brittle—plastic and strain-softening behavior of a circular
opening in a generalized Hoek—Brown rock mass: (a) distribution of radial
and hoop stresses; (b) radial displacement.

numerical solutions depend on the different selection of n
and two different residual dilation angles are considered.
The input data are b=5m, gyo=3 MPa, p;=0MPa,
E=10GPa, v=0.2, ¢,=30° ¢,=26° c,=0.5MPa,
¢, = 0.2 MPa.

The percentages of error in the radial displacement are
displayed in Fig. 7, where the exact solution is taken from
Park and Kim (2006). The general trend is similar to the
case for Hoek-Brown rock mass, Fig. 4. When n = 500,
the percentage error at the surface of opening (r/b =1) is
0.388% for ¢, = 0° and 1.316% for ¢, = 30°, which means
that if n = 500, the calculated displacement is close enough
to the exact ones. This figure also hints that the error for
the same n becomes larger when the rock mass is more
dilatant.
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Q

(u-uexact)/uexact (%)

o

(u'uexact)/ Uexact (%)

1.0 1.2 1.4 1.6 1.8 2.0 22
r/b

Fig. 7. Approximation errors in radial displacements for a circular
opening excavated in Mohr—Coulomb rock mass; b =5m, o= 3 MPa,
pi=0MPa, E=10GPa, v=0.2, ¢,=30° ¢,=26° c,=0.5MPa,
¢ =0.2 MPa: (a) ¢, = 0° (b) ¢, = 30°.

The calculated distributions of stress and radial dis-
placement for n = 500 are plotted in Fig. 8 together with
the exact solutions. As this figure indicates, the numerical
results are so close to the exact ones that the curves are
nearly overlapped. Since p; =0, the radial stress is zero
on the surface of the opening, while the hoop stress is pre-
dicted as 0.640 MPa when ¢, = 30°. The radial displace-
ment on the excavation surface is 38.409 mm for
¢, =30°, which is about 4.5 times the value (8.537 mm)
for ¢, =0.

4.2.2. Strain-softening behavior

The performance of the proposed finite difference
scheme in strain-softening regime for M-C rock mass
was verified through the construction of ground reaction
curve for a circular tunnel excavated in a strain-softening
rock. Although their solution process looks rather compli-
cated than the present method, Alonso et al. (2003) also
dealt with the same problem based on self-similarity char-
acteristics of the problem. In this section, both the results
were compared.

a S

Stress (MPa)

——c—— This study(n=500)

— — - — — Exact

: N B R B
1.0 2.0 3.0 4.0 5.0 6.0
r/b

——&—— This study (n=500)
—— - — —

Exact

Radial displacement, u (mm) o

Fig. 8. Stress and radial displacement distributions in Mohr-Coulomb
rock mass for. The same input data as in Fig. 7 are used: (a) radial and
hoop stresses (¢, = 30°); (b) radial displacements (¢, = 0° and ¢, = 30°).

0.6 T T T
This study (n=500)
0.5 . Self-similar solution |
(Alonso et al., 2003)
0.4+ I
b=3 m
s v=0.25, E=10 GPa
= 03 6,=20 MPa 7
¢,=30°, $=22°
02+ CPZI.O MPa, ¢=0.7 MPa -
0p=0=3.75°
P*=8x1073
0.1+ [ T
0
0 5 10 15 20 25 30

(u/b)2G)/(opic)

Fig. 9. Ground reaction curve for a strain-softening M—C rock mass.

The ground reaction curve is plotted in Fig. 9 and the
evolution of the radii of the elastic—plastic and softening-
residual interfaces, which are denoted R, and R, respec-
tively, are shown in Fig. 10. The solid lines indicate the
results from the proposed finite difference approximation
with n = 500, whereas the solid points, which is digitized



596 Y.-K. Lee, S. Pietruszczak | Tunnelling and Underground Space Technology 23 (2008) 588-599

0.5 T T T T T T

This study (n=500)

Self-similar solution
0.4 -
¢ (Alonso et al., 2003)

p/So

| |
2.5 3.0 3.5 4.0 4.5
Rsb, Ryb

Fig. 10. Evolution plastic radii in a strain-softening M—C rock mass.

from the graphs given in the article by Alonso et al. (2003),
represent the self-similar solution. The input parameters,
included in Fig. 9, are equivalent to those used by Alonso
et al. For this example, the critical support pressure is cal-
culated as p;c =9.134 MPa. Very close agreement can be
seen, so that it confirms that the proposed scheme works
correctly for the strain-softening regime for M-C rock
mass.

4.3. Discussion on the calculation time

In this study, the proposed numerical scheme was imple-
mented in a code written in Fortran90 language. When the
code is executed on a desktop computer having Pentium 4
CPU of 2.4 GHz clock speed, the runtime required to get
each solution presented in Section 4 is only 15.6 ms for
n = 500. It should be noted that the sufficiently accurate
result was obtained with n = 500. Furthermore, the run-
time for n = 5000 was 62.5 ms, still far less than 1 s. Hence
the proposed numerical scheme is very economical from
the point of calculation time and does not present a compu-
tational burden while giving very accurate results.

5. Influence of the strength parameter ‘@’ on the elasto-plastic
solution of the generalized H-B rock mass

Although Alonso et al. (2003) tried to get their self-sim-
ilar solution for the strain-softening behavior of the origi-
nal H-B rock mass where a = 0.5, so far there has been
no general strain-softening solution even for the original
H-B rock mass as far as authors know. The proposed finite
difference scheme, however, takes the generalized H-B cri-
terion into account. Moreover, our approach is most gen-
eral in that any strength parameter appearing in the
criterion can be depend on the internal plastic variable,
which is assumed to be P in his study. In the proposed
method, the strength parameters required for the elasto-
plastic analysis of the generalized H-B rock mass are
m(y%), s(°), @(3°), a(y"), a(y?) and y*". For simplicity,

the single value of 7" is chosen here, although each param-
eter can have its own value of 7P if it is supported by the
experiments. While restricted to the original H-B rock
mass and considered only elastic-brittle-plastic or elas-
tic—perfectly plastic behaviors, many previous works have
discussed in detail the influence of such strength parame-
ters as m, s, ¢, and y*" (Alejano and Alonso, 2005; Alonso
et al., 2003; Park and Kim, 2006; Sharan, 2003, 2005; Car-
ranza-Torres and Fairhurst, 1999), so that their roles in the
plastic calculation are relatively well understood.

In the latest version of H-B criterion (Hoek et al., 2002),
the strength parameter ‘«’, appearing as the power term in
Eq. (5), is no more fixed to 0.5, but it varies in accordant
with the geological conditions. Hoek et al. (2002) proposed
the following empirical relation for a:

1 1
2 * 6 (
where GSI is the geological strength index reflecting the de-
gree of fracturing and the condition of fracture surfaces of
rock mass (Hoek et al., 1995). Considering that GSI is in
the range of 10-100, a can take a value between 0.5 and
0.6. For the proper usage of the criterion, therefore, it is
necessary to figure out how the elasto-plastic behavior is
influenced by the strength parameter a.

In this section, we investigate the influence of the
strength parameter ¢ on the ground reaction curves and
the development of the plastic zone. Fig. 11 shows four
ground reactions curves obtained from the different
assumptions on a. Three curves among them postulate that
the peak and residual values of ¢ are equal to 0.5, 0.55, and
0.6 respectively, whereas for one of them, « in the strain-
softening region varies continuously from 0.5 to 0.6 with
yP as explained in Eq. (9). Other input data indicated in
Fig. 11 remained constant. The difference in the shape of
those curves looks substantial, especially when p; is very
low. The curve for continuously varying a is close to that
for a,=a,=0.6, this is because the thickness of the

a efGSl/IS _ 6—20/3) (36)

0.5 T T T T T

r ——o—>o a,;=a~0.50 1

o——= a,;=a=0.55

s—a—a a,=a,-0.60
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*-—-—9o— - ap—O.S, a,=0.6
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02 % 64p=30.0 MPa, 6,~25.0 MPa _|
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i sp=4.0e-3, 5,=2.0e-3 1

0.1+ q/P=I 59, wy=5°
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Fig. 11. Ground reaction curves for various ‘a’ values. The generalized
H-B rock mass showing strain-softening.
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strain-softening zone in this problem is very narrow as is
inferred in Fig. 12 where the radial and hoop stresses for
pi = 0 are displayed. The open circles on the curves for g,
indicate the transition points to strain-softening and resid-
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Fig. 12. Distribution of radial and hoop stresses for different values of ‘a’.
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Fig. 13. Evolution of plastic radii for different values of ‘a’: (a) the plastic
radius, Ry,; (b) the softening radius, R;.
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Fig. 14. Radial displacements on the opening surface and the critical
support pressure.

ual regimes. If the softening zone is very thin compared to
residual zone, the plastic behavior is shifted rapidly to the
residual regime. Larger value of « means that the rock mass
becomes unfavorable, so that it can be anticipated that the
plastic radius grows with increasing a. This tendency is
apparent in Fig. 12. The evolution of the plastic radius
R, and the softening radius R is plotted in Fig. 13, where
the expansion of the plastic zone with « is clearly shown.
Fig. 14 shows the radial displacements for p;=0 on the
surface of the opening when a, = a, = a is varied between
0.5 and 0.6. The critical support pressure p;. is also plotted
in this figure. Recall that no plastic zone is formed for the
support pressure larger than p;,.. The displacement
increases steeply with @, while p;. increases almost linearly.
According to this figure, the displacement for a = 0.6 is
about 3 times larger than that for « =0.5. Judging from
the discussion given in this section, the influence of the
strength parameter a on the plastic behavior of the general-
ized H-B rock mass seems considerable. The results pre-
sented in this section suggest that the selection of the
value for a should be very cautious.

6. Summary and conclusions

In this work, a simple numerical procedure for approx-
imating the strain-softening behavior of a circular opening
excavated in Hoek—-Brown or Mohr-Coulomb medium
was introduced. In the proposed method, the plastic ring
that forms around the opening was divided into a number
of small annuli having non-uniform thickness. Since the
radial stress ¢, is decreasing monotonically and the stress
values at both the elastic—plastic interface and the excava-
tion surface are known a priori, a linear differential
decrease in radial stress was assumed in each annulus start-
ing from the outmost one. The corresponding circumferen-
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tial stress oy was then determined by enforcing the yield cri-
terion. The size of each annulus was subsequently deter-
mined from the finite difference approximation of
equilibrium equation. Elastic strain increments in each
annulus were calculated from the corresponding stress
increments by invoking the Hooke’s law. Plastic strain
increments in each annulus were obtained from the finite
difference approximation of the compatibility equation.
The proposed methodology can be used for a perfectly
plastic and brittle-plastic material as well as the strain-soft-
ening behavior. It is recognized that the strain-softening is
attributed here to the material behavior, which is certainly
a limitation. In general, strain-softening is the effect of
localization of deformation and the extension of the pres-
ent approach to include this effect is currently under
investigation.

The proposed method was verified through some illus-
trative examples. For the brittle-plastic behavior, for
which closed form solutions exist, the present method
proved to be quite accurate in predicting the stresses and
displacements around the circular opening. It was demon-
strated that the errors involved are insignificant provided
that the plastic zone is divided into a sufficiently large num-
ber of annuli.

In the simulations incorporating strain-softening behav-
ior, parametric studies were carried out in the course of
specifying the ground reaction curves (GRC) and investi-
gating the locations of plastic radii. For M—C rock mass,
the approximate solutions showed perfect matches with
the published rigorous solutions. For the generalized H—
B rock mass, the strain-softening solution by the proposed
method approached the rigorous -elastic—brittle—plastic
solution with decreasing y*", so that the performance on
H-B rock mass could be confirmed. The results clearly
showed that more accurate prediction of displacements in
rock masses is possible by incorporating strain-softening
model and the displacements could be overestimated by
assuming the brittle—plastic behavior.

As an application example, the reaction of the elasto-
plastic solutions on the variation of the strength parameter
a’, which is the exponent in the generalized H-B rock
mass, was investigated. The results clearly showed that
the radial displacements around the opening become larger
with the increment of ‘@’ and also revealed that the plastic
radii grow with ‘@’

The proposed numerical procedure has been pro-
grammed into a FORTRAN code and run on a personal
computer having Pentium 4 processor. When the plastic
zone is divided into 500, the computing time was far below
1 s, so that the proposed method also seems to be very eco-
nomical from the view point of calculation time.
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Appendix A. Calculation procedure for the elastic—plastic
behavior of a circular opening

Input data
b radius of a tunnel
0o initial stress in a rock mass existing before the

excavation is made

E,v  Young’s modulus and Poisson’s ratio

Di supporting pressure acting on the surface of the
tunnel

wp, o, peak and residual values of strength parameters

(For Mohr—Coulomb rock mass, w’s represent ¢, ¢, and ¢,
whereas, in Hoek—Brown rock mass, w’s stand for o, m, s,

¢, and a)
PP’ critical deviatoric plastic strain
n number of annulus in the plastic zone

Preliminary calculations corresponding to step 0

1. Calculate p;.. If 0 < p; < pic, then or = p;ic (If p; = pjic, nO
plastic zone is formed, so that elastic solution should be
used for whole region).

2. Ao, = (p; — og)/n

3. 0,0) = Og; Go0) =200 — Og

4. &0y = (0 — 00)/(2G); €90y = (09 — TR)/(2G)
5. sp(o) =0; 82(0) =0; y‘(jo) =0

6. po)=1

7. Uiy = €0(0) P0) = €0(0)

8. W) = Wp

Sequence of calculation for each annulus in the plastic zone

1. Oy(i) = Op(i— 1)+AO',, _7( ( .)+a,(i,1))/2
2. Hyy = H(own, W) Hey = H(Gri) 7))
3. opiy = 0wy T H(,)

4. Aoy = Aay; Aagy = 0o — Oui-1)

5. pw = Pu—y(2Hq + Aawy) /(2H ) — Aov);
6. Apiy = piy — Pi-1); Py = (P + P-1))/2

7 {Asef(i)}:L[l—v -V :|{A0-r(i)}
AS()(,') 2G -V 1—v AJH(i)
8. k(,-,l) = (1 + sin @([71))/(1 — sin (/)(,j,l))

A H,:
b _(_ Mw 1Hy 1 (p» _.»p
9. Ag‘)(i) - ( Apiy  2G by P (89("*1) 8"0*”))/

10. AP = —
P _ P p ..p _ P p
T el = ey 1 Aey)s &gy = €ory T Ay
12. &) = &1y + Asﬁw + Aaféi);
89(‘) = 89 i—1) + ASZ + ASO(;‘)
13. /<l _"/l 1 (Abe _Agrp@))
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14. U() = eoipiiy *
15, If (0 <yP <), then ) = @, — (0, — ) ([, /7™ )-
If (y* = yP"), then w;) = o,

Repeating above 15 steps n times, then o,,,=p; and
Py = b/Ry, so that R, =b/p.,. The radial displacement
at each position is given by u(i) = U(i)R,,.
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