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Abstract 

The analysis of the ground response to tunnel excavation is described usually in terms 

of the characteristic line of the ground, which relates the support pressure with the 

cavity wall displacement. Squeezing conditions may lead to large convergences, 

sometimes greater than 10-20% of the tunnel radius, while the majority of the existing 

formulations for the Ground Response Curve (GRC) are based on the theory of 

infinitesimal deformations. This paper presents a large strain analytical solution for 

the GRC considering a linearly elastic-perfectly plastic material that obeys the Mohr-

Coulomb failure criterion with a non-associated flow rule. The case of out-of-plane 

plastic flow is included, taking place when the longitudinal stress is no longer the 

intermediate principal one. Comparisons with the classic small strain solution as well 

as with an approximate large strain solution which neglects elastic deformations in the 

plastic zone are presented, demonstrating moreover the influence of plastic dilatancy. 

The derived relations are found in perfect agreement with finite element results; 

hence, apart from their usefulness in convergence assessments when extreme 

squeezing conditions are expected, they can provide also valuable benchmark for 

numerical procedures which take into account large deformations. 
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1 INTRODUCTION 

Large convergences are encountered often in underground projects, which combine 

high overburden with poor ground properties. Various reports can be found in the 

literature dealing with tunnel cases under heavily squeezing conditions, e.g. the 

Gotthard base tunnel in Switzerland [3]. A widely used method for the estimation of 

the ground behaviour during tunnel excavation considers the characteristic line of the 

ground, which relates the support pressure with the wall radial displacement. A 

circular tunnel cross-section under axisymmetric plane strain conditions is usually 

used as the static system, corresponding reasonably well to the situation that prevails 

in deep tunnels far behind the face. 

The majority of the existing analytical solutions concerning the GRC are based on the 

small deformation theory taking into consideration several elastoplastic constitutive 

models with different post-failure behaviour. The most common of them for rock-like 

materials are the elastic-perfectly plastic, the elastic-brittle plastic and the strain 

softening one. Furthermore, some viscous models have been developed in order to 

account for time-dependent effects, which may be significant in case of squeezing 

rocks with considerable rheological behaviour, e.g. creep. 

On the contrary, few attempts have been made for the derivation of the GRC 

accounting for finite deformations. Papanastasiou and Durban [4] studied both 

problems of expanding and contracting cylindrical cavities in an infinite isotropic 

medium using the Mohr-Coulomb (MC) as well as the Drucker-Prager hardening 

solid, resulting in differential equations which must be solved numerically. Their 

results found to be in good agreement with experimental ones. Later, Yu and Rowe 

[7] presented an analytical solution to the problem of cavity wall unloading (for 

cylindrical or spherical cavities) using the linearly elastic-perfectly plastic MC model. 

However, in order to express the cavity contraction curve in closed form, they ignored 

elastic deformations within the plastic zone. Vrakas and Anagnostou [6] extended 

recently this study, presenting an accurate solution to the problem without neglecting 

elastic deformations in the plastic region, considering the more general elastic-brittle 

plastic case as well as examining the influence of the out-of-plane stress (for the two-

dimensional case). It is shown that when this stress is no longer the intermediate 

principal one, an inner second plastic ring is formed, where an edge flow takes place, 

similarly to the small strain case presented by Reed [5]. 
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The presented paper is based upon the extended report [6]. It outlines the derivation of 

the large strain GRC, summarizes the equations for the GRC, shows the validity limit 

of the small strain assumption and compares the closed-form solution with numerical 

results. It shall be noted here, that this study focuses on fully drained cases without 

seepage flow or dry grounds, where the influence of the water is negligible. 

2 LARGE STRAIN CLOSED-FORM SOLUTION FOR THE GRC 

The classic problem of a cylindrical cavity with radius ao, unloaded from the in situ 

state of stresses in an infinite medium is examined (Fig. 1). An isotropic initial stress 

field expressed by the stress σo is considered, while the gravitational forces are 

neglected; therefore, the problem becomes one-dimensional with respect to the radial 

direction. During unloading, the radial, σr, and the tangential stress, σt, constitute the 

minor and the major principal stress, respectively, due to the convention of positive 

compression that is used. It shall be noted, that the considered stresses correspond to 

the Cauchy ones (i.e., force per current unit area), while the appropriate logarithmic 

definition is adopted for the strains. 

As the internal support pressure, σa, is reduced successively, the ground behaviour 

around the opening is initially purely elastic. The radial stresses decrease while the 

tangential ones increase until the MC criterion is satisfied at the tunnel wall. This 

takes place when the critical value σρ1 is reached. Then, the material starts to become 

plastified forming a plastic zone of radius ρ1 around the cavity (Fig. 1). The higher 

order terms of the Hencky strains during elastic response are neglected, otherwise a 

closed-form analytical solution could not be obtained, except for an incompressible 

material. This approximation leads to the classic small strain relations for the elastic 

domain with respect to the Eulerian (or spatial) radial coordinate r. 

Accounting for the equilibrium equation on the deformed configuration, the MC 

failure criterion, the boundary condition at the cavity wall and the continuity of 

stresses at the elastoplastic interface, the stresses inside the plastic ring can be 

expressed in terms of the ratio r/a, where a denotes the current tunnel radius. In 

contrast to the small strain formulation [5], the determination of the displacement 

field is a prerequisite here for the estimation of the stress field. Considering moreover 

the plastic flow rule and the continuity of radial displacements at the elastoplastic 

boundary, the cavity contraction curve can be calculated after some mathematical 

treatment. The axial stress is obtained by the corresponding elastic constitutive 

relation (εz = 0). 



Apostolos Vrakas and Georgios Anagnostou 

 

 

 

 

262 

As the support pressure σa is further reduced to the value σρ2 (ensuring that σρ2 is 

positive, which is true under certain conditions concerning the problem parameters, 

see Eq. 3), a second inner plastic ring of radius ρ2 begins to form, where the 

longitudinal stress, σz, remains equal to the tangential one. Inside this region, an out-

of-plane plastic flow takes place. The radial as well as the tangential stresses are still 

given by the same relationships in both zones as in the previous case, whereas the 

continuity of displacements at radii ρ1 and ρ2 in combination with the appropriate flow 

rule in each zone must be considered for the estimation of the displacement field. 

The necessary relations for the construction of the GRC accounting for large strains 

are given below. The general expressions as well as the complete mathematical 

process for their derivation can be found in [6]. The corresponding small strain 

solution of the problem is presented in [5]. Hence, regarding that the elastic material 

properties are expressed by the Young’s modulus, E, and the Poisson’s ratio, v, while 

the plastic ones are given by the cohesion, c, the friction angle, φ, and the dilation 

angle, ψ, the tunnel wall displacement (positive inwards), ua, can be calculated: 
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By neglecting elastic deformations in the plastic zone(s), the solution is simplified to a 

large degree, given by a single relation during elastoplastic response [7]: 
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(10)  

 

Figure 1: Computational model for a deep circular tunnel, with the developed plastic zones. 

3 ANALYTICAL AND NUMERICAL RESULTS 

An application of the aforementioned relations is presented here, in conjunction with 

some numerical results obtained with the Abaqus software [1]. The considered finite 

element model is the widely used axisymmetric strip with the proper vertical 

displacement restraints. The computational domain is discretized by using 
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quadrilaterals elements (CAX4), while one infinite element (CINAX4) is 

incorporated in order to simulate the unbounded far field (Fig. 2). The classic MC 

model describes the material behaviour, having a pyramidal failure surface and plastic 

potential in the principal stress space as well as satisfying the Koiter’s rule [2] in case 

of a singularity stress state, i.e. the incremental plastic strain is given by the sum of 

the components of the two flow rules. 

The computational examples consider the rock properties proposed by Kovári et al. 

[3] for the Sedrun section of the Gotthard base tunnel in Switzerland, based on 

experimental investigations of the ETH Zurich: E = 2000 MPa, c = 0.25 MPa and φ = 

23o. The Poisson’s ratio v is taken equal to 0.25. The overburden depth is 

approximately 900 m, which corresponds to an initial stress σo = 22.5 MPa. 

 

Figure 2:  Axisymmetric finite element model for the calculation of the GRC. 

Figure 3 presents the GRCs for a non-dilatant (ψ = 0ο) and a dilatant material (ψ = 10ο 

and ψ = 20ο, respectively). The finite element results fit almost perfectly the analytical 

ones for both formulations, while the approximate large strain solution that ignores 

elastic deformations in the plastic zone underestimates the tunnel wall displacements. 

It can be seen in these graphs that the error of neglecting the elastic deformations in 

the plastic zone is bigger at the lower dilation angle range. The error of the classic 

small strain solution is small up to convergence ratios ua/ao of 10%, a limit value 

which in the present example still corresponds to significant support pressures. One 

recognizes, furthermore, that the small strain solution may lead to irrational results, 

providing convergences greater than the initial tunnel radius (Fig. 3b-c). Finally, it 

can be confirmed, that the dilatancy favours the developed displacements to a great 

extent due to the unrestrained volumetric increase of the assumed constitutive model. 
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Figure 3:  Ground response curves for a dilation angle: (a) ψ = 0ο, (b) ψ = 10ο and (c) ψ = 20ο. 
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4 CONCLUSION 

A closed-form solution for the GRC was presented considering finite strains. The 

proposed analytical expressions can be used for convergence assessments in 

tunnelling under extreme squeezing conditions, while they constitute also trustworthy 

benchmark for numerical procedures which account for geometric nonlinearities. 
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