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ABSTRACT: Seepage forces generated during tunnel excavation affect the ground response and 
may cause severe instability problems, including total ground collapse and flooding into the 
tunnel. This paper presents a new closed-form analytical solution, for stresses and displacements 
around a cylindrical tunnel excavated in a porous water-bearing elasto-plastic material, which 
includes the effects of seepage forces. The analysis is carried out in terms of effective stresses 
and pore water pressures. The solution shows that seepage forces may have a major effect on the 
effective stresses around the tunnel, on the extent of the plastic zone, on the radial displace-
ments, and on the tunnel support requirements. The conditions for development of a ‘flowing 
ground’ condition at the tunnel face have been identified. The paper presents a procedure for the 
hydromechanical ground-support interaction analysis, to determine the excavation induced in-
flow and the pressures acting on the lining, throughout the progressive driving of the tunnel, in-
cluding the effective pressures exerted by the ground and the pressures generated by the water. 

 
1 INTRODUCTION 

 
Tunneling in water bearing ground affects the hydraulic equilibrium of the surrounding 

ground leading to seepage into the tunnel. The seepage forces generated in the ground by the 
movement of water towards the tunnel can have a significant effect on the behavior of the open-
ing. Groundwater inflow can cause severe instability problems, including total ground collapse 
and flooding into the tunnel.  Numerous case histories of tunnel failures during construction, at 
sections with high water pressures, have been reported (e.g. Marulanda, et al, 2008, Singh et al, 
2006). Failure often consists of a sudden “mud inrush” flowing violently into the opening, drag-
ging equipment, facilities and sometimes even workers, and completely invading long stretches 
of tunnel. Even in less striking cases, seepage forces can have a strong effect on the ground sup-
port requirements and on the structural requirements of the support system. 

 Nevertheless, no adequate analytical solutions that consider the effect of seepage forces are 
currently available for analyzing the inelastic ground-support interaction to dimension tunnel 
support elements, and for properly assessing cases of ‘flowing ground’. 

A number of researchers have investigated the effect of seepage forces during excavation on 
the stress and displacement fields around tunnels. The analysis techniques used by these authors 
vary from advanced numerical methods to simplified elastic solutions.  Alvarez (1997) used the 
coupled hydro-mechanical discrete-finite-element model developed by Barbosa (1990), Shin et 
al (2005) used a coupled finite element model with nonlinear permeability, Fernandez and 
Moon (2006) used a coupled distinct element model, Lee and Nam (2001, 2004) used uncou-
pled finite element analyses, and Li (1999) and Bobet (2003) developed elastic closed-form so-
lutions.  

In this paper a proper elasto-plastic solution is derived, for a deep cylindrical tunnel exca-
vated in a Mohr-Coulomb perfectly plastic material under the water table, considering seepage 
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forces. In addition to establishing the radius of the plastic zone, radial convergence, the stress 
and displacement fields around the tunnel, and identifying the condition for development of 
flowing ground condition at the tunnel face, a procedure for hydromechanic ground-support in-
teraction is proposed. The basic assumptions are stated first and then the solution is developed. 

2 BASIC ASSUMPTIONS 

The basic configuration considered in this study is shown in Figure 1. The analysis assumes a 
deep cylindrical tunnel of radius a, excavated in a naturally stressed water-bearing ground that 
obeys the principle of effective stress. A supporting lining is installed after excavation. A cylin-
drical coordinate system with the origin at the center of the opening is used in the analysis. The 
length of the tunnel is such that the problem can be treated two-dimensionally. 

 

 
 
Figure 1. (a) Effective stresses (b) Pore water pressures (c) Transient hydraulic radius of influence.  

 
The horizontal and vertical in situ effective stresses are assumed to be equal and to have a 

magnitude P’0.  The installed support is assumed to exert a uniform radial effective support 
pressure P’i on the walls of the tunnel.  

The original groundwater pressure is Pw0. The pressure inside the supported tunnel is equal to 
the atmospheric pressure. The water pressure at the lining-tunnel wall interface is Pwi. Ground-
water inflow is assumed to be radial. It is assumed that the effect of the water-pressure-drop 
vanishes beyond a no-flow moving boundary located at a time-dependent distance Rw(t).Beyond 
such instantaneous distance, the tunnel has no effect on the original groundwater condition and 
the pore water pressure becomes equal to the original ground water pressure. 

The original ground is assumed to be a porous liner-elastic material characterized by a 
Young’s modulus E, a Poisson’s ratio ν, a Darcy’s coefficient of permeability K, and a specific 
storage Ss. The failure characteristics of this material are defined by the Coulomb-Navier equa-
tion. 
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where σc = unconfined compressive strength and φ' = effective friction angle.  
The failed ground surrounding the tunnel is assumed to be perfectly plastic and to satisfy the 

following failure criterion 
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It is assumed that the strength reduces suddenly from the peak defined in equation (1) to the 
‘residual’ defined in equation (2).  
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The volumetric response of the material in the plastic zone is controlled by the dilation angle 
α’. If the dilation angle is equal to the friction angle (α’=φr’) then the plastic flow rule is said to 
be associated and the material undergoes volumetric expansion while it plastifies. If the dilation 
angle is less than the friction angle the plastic flow rule is said to be non-associated.  If the dila-
tion angle is zero, there is no volumetric change while the material plastifies. The dilation angle 
enters the solution through the parameter Nα that controls the ratio between the circumferential 
(or tangential) and the radial components of the plastic strain increment.  
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3 FUNDAMENTAL RELATIONS 
3.1 Equilibrium and compatibility 

 
Figure 2. (a) Equilibrium of an infinitesimal element (b) Water continuity on infinitesimal element. 

 
Figure 2(a) illustrates the stresses acting on a typical ground element. The basic differential 
equation of equilibrium for such element is 
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where σ'r and σ'θ represent the effective radial and tangential stresses respectively at a distance 
r, and the third term is the seepage force. The radial and tangential strains for plane strain condi-
tions can be stated in terms of the radial displacement u, as follows 
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Strain components are related by the strain compatibility equation, which is obtained by 
eliminating the radial displacement in Eq. (5) 
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3.2 Continuity 
Figure 2(b) illustrates the amount of water that enters a differential element and the amount of 
water that leaves the element, per unit time. The difference between these two quantities repre-
sents the change in the volume of water stored in the element. For a steady state condition, the 
amount of water that leaves the element is equal to the amount of water that enters it. In the 
transient stage, the flow rate that exits the element is larger than the flow rate that enters, as 
some water stored in voids and joints of the ground is released. 
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Using Darcy’s law to write the flow rates in and out of the element and writing the change in 
volume of water in terms of the volumetric specific storage of the ground Ss, the continuity con-
dition yields the following diffusion equation 
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The volumetric specific storage is the amount of water per unit volume of a saturated forma-
tion that is released, per unit decline in hydraulic head.  Specific storage can be expressed in 
terms of compressibility of water Cw, compressibility of skeleton Cs, and porosity n, as 

)( wsws nCCS += γ . 

4 METHOD OF ANALYSIS 
 
The method of analysis follows the approach used by Perrochet (2004) to derive a transient so-
lution for tunnel discharge under constant drawdown. The analysis is based on the idea that the 
transient solution can be computed as successive steady state snapshots using a time dependent 
radius of influence, Rw.  Therefore, in deriving the solution for stresses and displacements, the 
equilibrium equation is integrated, by treating the radius of influence as a known constant dis-
tance beyond which the water pressures becomes equal to the original water pressure Pw0. The 
transient nature of the solution is represented by the time dependency of Rw, which is deter-
mined from the solution of the diffusion equation.  

The proposed solution includes coupling between effective stresses and pore water pressures 
with ground displacements. However, the solution neglects any variation of the coefficient of 
permeability with changes in effective stress. More precisely the analysis assumes that the ratio 
Ss/K is constant in time and space.  A similar approximation is implicit in the conventional solu-
tion for consolidation of soft clays, which is a similar diffusion process involving release of 
pore water from saturated ground. The mechanism for pore water release in the later diffusion 
process is however different, due to differences in the relative compressibility of the skeleton 
and water, and to the magnitude of the water pressures. While during consolidation of clays, the 
mechanism for water release is compression of the soil skeleton; the transient flow into a deep 
tunnel excavated in a water-bearing rock formation is produced mainly by water expulsed from 
the voids due to expansion of pore water, as the pore water pressure is reduced.      

5 ELASTIC ANALYSIS 

Substituting the stress-strain relations for elastic behavior and the pressure gradient for radial 
flow into the equilibrium equation, and integrating the resulting differential equation, yields:  
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For r = a, Eq. (8c) reduces to: 
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For r ≥ Rw: 
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The set of equations 8 show the detrimental effect of seepage forces on the stresses around 
the tunnel. Seepage forces reduce the effective radial stress, which is the minor principal stress, 
and increase the tangential stress, which is the major principal stress. Therefore, seepage forces 
increase the deviatoric stress σr-σθ, around the tunnel, while reducing the effective confining 
stress σ'3.  

On the other hand, Eq. 8c shows that even if the effective support pressure is equal to the far-
field effective stress, there is still a ground displacement produced by seepage forces.  Accord-
ing to Eq. (8d), the displacement at the wall face turns out to be the same as that computed for 
the total net pressure. However, the above result is true only for elastic conditions and only at 
the wall face.        

6 ELASTO-PLASTIC ANALYSIS 

The elastic solution is valid for effective support pressures greater than a critical pressure Pi’crit 
for which the effective stresses at the tunnel wall reach the failure criterion of the original 
ground. Using Eqs. (8) for r=a and substituting into Eq. 1 yields 
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For effective support pressures lower than the critical, the effective stresses induced in the 
ground following excavation will exceed the original ground strength, and a plastic zone of ra-
dius Rp will develop around the tunnel. The ground outside the boundary defined by Rp is as-
sumed to remain elastic. 
6.1 Stresses and displacements in the elastic zone 
The elastic solution derived above is valid in the elastic zone. If the plastic zone is within the 
radius of influence of the tunnel (e.g. Rp<Rw) the solution is a set of equations similar to Eqs. 
(8), in which the tunnel radius a, is replaced by Rp, and the effective internal pressure P’i, is re-
placed by the effective radial stress at the elastic/plastic interface, σ'rp. On the other hand, if the 
plastic zone extends beyond Rw, the solution is a set of equations similar to Eqs. (9), in which 
the radial distance Rw is replaced by Rp and the effective stress σ'rw is replaced by σ'rp.  

6.2 Stresses in the plastic zone 
Substituting the failure criterion for the material in the plastic zone, into the equilibrium equa-
tion, and integrating the resulting differential equation, yields the following stress distribution in 
the plastic zone.   
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Equation (11b) shows that the effect of the seepage forces can be visualized as that of reducing 
the compressive strength of the ground in the plastic zone.  
6.3 Radius of plastic zone 
Considering equilibrium of effective radial stresses at the plastic/elastic boundary yields  
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The radius of the plastic zone is determined by solving iteratively Eq. (12). Equation (12) 
presumes that the plastic zone is within the radius of influence of the tunnel (e.g. Rp<Rw). If the 
plastic zone extends beyond de radius of influence, additional computations are required to de-
termine the actual extent of the plastic zone. First Eq. (8a) is used to compute σ'Rw, the effective 
radial stress at a Rw. Next a simplified version of Eq. (12) is used to compute the radius of the 
plastic zone, in which the effective support pressure P’i is replaced by σ'Rw and the water pres-
sure gradient term is ignored. Such equation can be solved directly without any iterative proce-
dure. 

 
6.4 Flowing ground condition 
Equation (12) will not converge (i.e. continuity of effective radial stresses at the plastic/elastic 
boundary cannot be accomplished) if the water pressure gradient, effective support pressure, and 
strength of the ground in the plastic zone are such that  
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For the above condition, which makes the denominator of Eq. (12) negative, the ground cannot 
resist the seepage forces and collapses into the tunnel. A ‘flowing ground’ condition will de-
velop at the tunnel face, with the ground invading the tunnel.  

Equation (13) includes three terms, which means there are three ways to handle flowing 
ground conditions. (a) Reduce the net water pressure with drainage (or compressed air), increase 
effective support pressure by adopting a stiffer support, and (c) increase ground strength with 
grouting.  

 

 
 
Figure 3. Effective stresses, water pressures and displacements around a tunnel. 
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6.5 Displacements in the plastic zone 
Substituting the assumed flow rule into the strain compatibility equation, and integrating the re-
sulting differential equation yields the following distribution of displacement within the plastic 
zone 
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where σ’Rp and Pwp are the effective radial stress and pore water pressures at the plastic/elastic 
interface. The above solution allows computing the stress and displacement fields around the 
tunnel. Fig. 3 shows de distribution of pore water pressures, effective stresses and displacements 
for an application example described in section 9. The effective and water pressures at the wall 
face are Pi’ = 0.84 MPa and Pwi= 1.09 MPa respectively, while the in situ effective stress and 
pore pressures are P’0 = 4.9 MPa and Pw0 = 3.2 MPa respectively. 

7 TRANSIENT ANALYSIS 

7.1 Transient radius of influence 
The radius of influence Rw, has been treated so far as a constant distance beyond which the pore 
water pressure becomes equal to the original water pressure. However, in reality, such radius is 
transient in nature. Its initial value is the radius of the opening when the excavation is made, and 
it expands radially as time proceeds, until a maximum value is reached, corresponding to the 
development of a steady state condition.  

 
Jacob and Lohman (1952) derived the first transient solution of the diffusion equation, for a 
tunnel subjected to a sudden, constant hydraulic head. The solution is a complicated one, which 
involves first and second kind zero-order Bessel functions. Recently, Perrochet (2005) devel-
oped a much simpler analytical solution, which yields essentially the same results. From the 
formula for the transient discharge in such solution, and accounting for the presence of a liner, 
the following equation for the transient radius of influence is obtained  
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where t is the time elapsed since flow started at the section analyzed, and Rwmax is the maximum 
radius of influence corresponding to the final steady state condition.   

   
   

7.2 Progressive excavation 
Combining the above elasto-plastic solution and the concept of transient radius of influence, it is 
possible to evaluate the variation in time of the tunnel support requirements, extent of the plastic 
zone, distributions of pore water pressures, effective stresses, and displacements, during tunnel 
excavation, in terms of the tunnel advance rate. The analysis follows the approach used by Per-
rochet (2005) to determine transient discharge into a tunnel during progressive drilling.   
 
Consider the progressive driving of a tunnel into a permeable zone at an average advance rate v, 
as illustrated in Figure 4. At time t, the tunnel face is located at a distance vt, and the time at 
which a position x <vt was reached is x/v. Thus, the time elapsed since that position was reached 
and during which inflow occurred at that section is t-x/v, which is the time that goes into equa-
tion 15. Therefore, the transient radius of influence is a non-uniform function of space over the 
distance vt.  Thus for a long tunnel, it is possible that by the time the tunnel face is near the end 
of the water-bearing zone (x=L), while the transient expansion of the radius of influence is be-
ginning at such location, near the entrance to the water-bearing zone (x=0) the radius of influ-
ence may be approaching the steady state maximum. 
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Figure 4. Flow regime, radius of influence Rw, and water inflow per unit length of tunnel, for a tunnel 
excavated at a constant velocity. 

As a result, the radius of influence at the tunnel face, at the point where the support is being in-
stalled, and elsewhere, depend on the tunneling rate. If the tunnel is driven fast, the radius of in-
fluence along the tunnel will be small, resulting in large hydraulic gradients and seepage forces, 
which could cause stability problems at the face. For a slower advance rate, a larger hydraulic 
influence zone develops, reducing hydraulic gradients and seepage forces. Therefore, in poor 
permeable ground a slow rate of advance is preferred. However, on less pervious soft ground, 
with a short-term strength (undrained) greater than the long-term strength (drained), rapid ad-
vance improves stability.  Analysis for the later case is not considered in this study. In both 
cases tunnel support, should be installed as fast as possible to provide early mechanical support.  

On the other hand, as shown in Fig. 4, the larger initial heading inflow or “flush flow” 
(Heuer, 1995, Fernandez et al 2006), and the continuous decrease with time of the inflows per 
unit length that have been measured at tunnel walls as the steady state condition is approached, 
are all consistent with the concept of transient radius of influence. As the radius of influence ex-
pands the hydraulic gradient decreases and the inflow reduces as well.    
 
7.3 Steady state radius of influence 
Pore pressures, seepage forces, groundwater inflow, and the risk for instabilities are in general 
greatest immediately after excavation. The long-term condition would not be critical unless 
there is a significant deterioration of ground properties over time (e.g. due to weathering, slak-
ing, creep, etc). Still, the long-term condition may be significant for the tunnel operation in 
terms of inflow. For long times, as the radius of influence expands away from the tunnel wall, 
the flow deviates from a circular fashion as the steady state condition is approached, and adjust 
to the site groundwater boundary conditions. Some possible steady state equilibrium configura-
tions are shown in Figure 5. 

The final steady state configuration of the water table depends on the available recharge. In 
case (a) recharge is from above and there is an unlimited amount of water available for recharge. 
The tunnel does not modify the horizontal water table. This is a case of confined flow where the 
ground remains saturated. In case (b) the water table is below the ground surface and the ground 
receives limited recharge water directly from the surface, mainly from precipitation. The re-
charge however is insufficient to maintain a horizontal water table and a significant drawdown 
develops. This is a case of unconfined flow where drainage of pore water makes part of the 
ground partially saturated. In case (c) the recharge is also limited, but greater than that in case 
(b), resulting in a small drawdown. In case (d) recharge is from an aquifer underlying the 
ground around the tunnel. Recharge is unlimited and the type of flow is confined.    

Based on the flow net, one could estimate a steady state radius of influence Rwmax as a dis-
tance beyond which the pore pressure is not affected significantly by the presence of the tunnel. 
Typically Rwmax can be estimated as a factor (1 to 2) of the original groundwater pressure head 
Pwo/γw. Alternatively, an equivalent Rwmax could be computed as the radius of influence for a 
symmetrical flow regime that yields the same inflow as that of the actual flow net.  
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For case (a) in Fig. 5, the equivalent steady state radius of influence can be computed in 
terms of the depth to the tunnel D, using the actual analytical solution for flow rate (Harr, 1962), 
as 

DRw 2
max

=  (16) 

 

 
Figure 5. Steady state flow regime. 

 
7.4 Unconfined flow 
In cases of unconfined flow, such as in cases (b) and (c) in Figure 5, there are actually two dif-
ferent transient processes: expansion of the radius of influence and drawdown of the water table. 
Although both transient processes involve release of stored water, the mechanism of water re-
lease is different. During expansion of the radius of influence, water is released from saturated 
ground that remains saturated. The mechanism for water release is expulsion of pore water due 
mainly to expansion of pore water, as pore water pressure is reduced, and to a less extent, to 
compression of the ground skeleton.  During the drawdown of the water table, water from stor-
age is released by the mechanism of actually draining the pores of the ground, which makes part 
of the ground partially saturated (the depression cone).  

Furthermore, the rate of the two transient processes is different. The rate of expansion of the 
radius of influence is controlled by the specific storage Ss, among other factors. On the other 
hand, the rate of drawdown is controlled by the storativity S (storage coefficient).  The storativ-
ity is the percentage (by volume) of water that the ground could yield. For coarse-grained 
ground, the storage coefficient is equal to the porosity. For fine-grained ground the storage coef-
ficient is smaller than the porosity because molecular and subsurface tension forces in the pore 
spaces keep some of the water in the voids. 

The final width Xmax, of the depression cone, for the steady state condition, can be determined 
based on the recharge r (e.g. mm/day) and the tunnel inflow as: Xmax=q/r. A solution for the 
transient radius of the depression cone of an unconfined well from which water is pumped was 
derived by Chi (1994) as  
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Thus, according to Eq. (17) the width of the drawdown cone expands exponentially with 
time, at a decreasing rate. Although Eq. (17) is applicable to a well or a vertical shaft instead of 
a horizontal tunnel, it suggests that the rate of drawdown is much slower than the rate of expan-
sion of the radius of influence.  Therefore, it appears that for unconfined flow cases, the expan-
sion of the radius of influence predominates, in the early stages of flow after tunnel excavation, 
whereas drawdown dominates in the late stages. 

8 HYDROMECHANICAL GROUND-SUPPORT INTERACTION 

A ground-interaction analysis is used to determine the pressures acting on the lining, including 
the hydraulic pore water pressure Pwi and the mechanical effective pressure P’i. The analysis is 
carried out for a time t, at which the tunnel support is installed. The support system considered 
includes a concrete lining and (or) rockbolts. 

 

 
Figure 6.  (a) Hydraulic ground-support interaction (b) mechanic ground-support interaction 

 
The concrete or shotcrete lining is assumed to be porous and elastic-perfectly plastic. The prop-
erties of the lining are thickness tc, Young’s modulus Ec, Poisson’s ratio νc, compressive 
strength f’c, and coefficient of permeability Kc. The maximum support pressure Pcmax is com-
puted based on the specified compressive strength. 

The ungrouted mechanically or chemically anchored bolts are characterized by a stiffness Kb 
and a maximum support pressure Pbmax. These properties are computed based on the spacing, 
length, individual capacity, and other characteristics of the individual elements (Hoeck & 
Brown, 1980). 

 
8.1 Hydraulic interaction 
The flow rate seeping through the ground is  
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Whereas the flow rate through the lining is  
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Figure (6a) illustrates the variation with Pwi of both, the flow rate through the lining and the 
seepage through the ground. Both are linear relations. From continuity, both flow rate quantities 
must be equal. Thus, as shown in Figure 6a, the inflow into the tunnel and the actual water pres-
sure acting on the lining are represented by the intersection of the above two lines. If a relatively 
impervious lining is selected, the resulting water pressure acting on the lining is high, close to 
original water pressure Pw0 and the tunnel inflow is minimal On the contrary, if a permeable lin-
ing is selected, the water pressure on the lining is minimal but the tunnel inflow is large.  
8.2 Hydromechanical interaction 

8.2.1 Ground response curve 
Figure 6 illustrates the ground response curve as computed with the solution developed in the 
preceding section, by computing the wall displacement for the pore water pressure Pwi deter-
mined above, and for a variable effective support pressure P’i. The effective support provided 
by the ‘face effect’ is shown in Fig. 6 as P’f. 

8.2.2 Support characteristic curve 
The support characteristic curve is obtained by subjecting the lining to the hydraulic pressure 
Pwi and to a variable mechanical pressure P’i. The characteristic curve is positioned at an initial 
displacement uio representing the displacement that has occurred in the ground prior to the in-
stallation of the support. Such displacement can be estimated from a longitudinal deformation 
profile, as usual in the Convergence Confinement Method.  

The solution for a porous liner subjected to hydraulic load Pwi and a mechanical load P’i is 
obtained using the same approach followed to obtain the elastic solution in section 5. 

The characteristic curve is: 
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The tangential stress at the inner wall of the lining is  
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The maximum support pressure generated by the concrete lining is the one that makes the 
tangential stress equal to the compressive strength of the material (i.e. ). ''

cf=θσ
 

Although the analysis assumes both support systems are installed at time t, in combining their 
characteristic curves, the actual sequence must be considered. As Fig. 7 illustrates, the sequence 
determines whether or not rockbolts help to support the external water pressure acting on the 
concrete lining. If shotcreting is done first followed by rock-bolting, rockbolts help to support 
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the fluid pressure. On the contrary, if the tunnel wall is bolted before shotcreting, the concrete 
liner alone has to support the fluid pressure. 

 
Figure 7. Combined support characteristic curve for two sequences of support installation. (a) shotcret-
ing-bolting, (b) bolting-shotcreting 

9 EXAMPLE 
A 6 m diameter tunnel is excavated in a jointed sandstone at a depth of 300 m below the surface 
where the total in situ stress is Po=8.1 MPa and the pore water pressure is Pwo= 3.2 MPa (pres-
sure head 20 m above ground surface, Case (a) Fig. 5).   The following material data is given: 
• Original rock mass: E = 1.5 GPa, ν = 0.33, σc = 1 MPa, φ = 30º, K = 0.001 mm/sec, Ss = 0.00005 m-1. 
• Rock mass in plastic zone: σcr = 0.5 MPa, φr = 25º, αr = 20º. 
• Shotcrete lining: tc = 200 mm, Ec = 16 GPa, νc = 0.25, f’c = 50 MPa, Kc = 3x10-5 mm/sec. 
• Rockbolts: 25 mm rockbolt, spacing pattern: 1.00 m x 1.00 m. 

The support is installed at a distance of 2 m from the advancing tunnel face, about 4 hours af-
ter tunnel face advance. Based on the above distance and a longitudinal deformation profile, the 
initial ground displacement prior to the installation of the support is estimated to be 0.477 the 
maximum displacement away from face (displacement at which an unstable ‘flowing ground’ 
condition develops).  The equivalent steady state radius of influence is Rwmax= 2 x 300 = 600 m.  

This example was solved for: (1) the original parameters, (2) a liner with numerous shrinkage 
cracks and gaps represented by increasing its permeability an order of magnitude (Kc = 3x10-4 
mm/sec), (3) no pore water pressure or conventional solution in terms of total stresses without 
considering pore water pressures and seepage forces. The results of the analysis are presented in 
Fig. 8 and summarized in Tables 1 and 2. Partial results for a case intermediate between 1 and 2 
(Kc = 6x10-5 mm/sec) were presented in Fig. 3. 

Comparing to case 3 (no pore pressures/ conventional analysis), case 1 demonstrates the ef-
fect of pore pressures and case 2 demonstrates the effect of seepage forces. In case 1, the liner is 
relatively impermeable as compared to the ground, thus seepage is limited. As Fig. 8a shows, 
the external water pressure in the liner is relatively high in this case. Hence the pore pressures in 
the ground near the tunnel remain high.  

On the other hand, in case 2, the cracked lining allows more inflow and the release of the ex-
ternal pressure. As Fig 8a shows, the external water pressure in the lining is relatively low. 
Thus, there is a more significant hydraulic gradient in the ground in this case, leading to larger 
seepage forces. Fig. 8b shows the distribution of pore water pressure in the ground. The radius 
of influence is larger in the case of the cracked liner because the net hydraulic head is larger 
leading to a faster rate of expansion of Rw. Table 2 shows the expansion with time of Rw. Thus, 
even in permeable ground, it takes a few months to develop a steady state condition. 

The ground reaction curves are shown in Fig 8c. The water pressure for each case is shown as 
a dotted line. The point of equilibrium is reached for much larger displacements in case 3, due 
to pore pressures and seepage forces, next in case 2, due to pore pressures and least in case 3, 
which includes neither pore pressures nor seepage forces. 

Effective stresses and the extent of the plastic zone are shown in Fig. 8d. The conventional 
analysis gives the most optimistic results. The radius of the plastic zone increases from 2.12 to 
2.64 because of the water pressures, and to 2.86 due to seepage forces. 
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Finally, the radial displacements are shown on Figure 8e.  Pore pressures increase the radial 
displacement at the tunnel wall from 114 mm to 164 mm, and seepage forces to 243 mm. 

 

 
Figure 8. Hydromechanical interaction, and effective stresses, pore pressures, and displacement around 
tunnel for (1) original parameters (2) cracked liner (3) conventional analysis with no seepage forces 

 
 

Table 1. Summary of Results. ____________________________________________________________________ 
No  P’0  Pw0  P’i   Pwi  Ua   Rp/a  Rw/a 
   MPa  MPa  MPa  MPa  mm   -    - ____________________________________________________________________ 
1       4.9  3.2  0.73  1.69  164  2.64  7.90 
2      4.9  3.2  1.00  0.28  243  2.86  10.57 
3    8.1  0   1.03  0.00  114  2.12   - ____________________________________________________________________ 
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Table 2. Expansion of Radius of Influence with Time. ________________________________________________________________________________________________ 
Time     0  2hrs    4 hrs  12 hrs  1 day  1 week  1 month 3 months 6 months ________________________________________________________________________________________________ 
Case 1, Rw (m): 3  16.9    23.7  41.0  58.3  158  333   586   600    
Case 2, Rw (m): 3   23.1   31.7  53.1  74.1  192  397      600   600   ________________________________________________________________________________________________ 

10 CONCLUSIONS 
Seepage forces generated during tunnel excavation may cause serious instability problems, 
which cannot be assessed with current ground interaction analyses. An elasto-plastic solution 
has been derived that includes the effect of pore water pressures and seepage forces, on the 
stress and displacement field around the opening, and on the extent of the plastic zone. The 
conditions for development of ‘flowing ground’ at the tunnel face have been identified. The 
transient nature of the hydraulic radius of influenced has been described and a procedure to pre-
dict its transient expansion has been proposed. The effects of the progressive excavation have 
been discussed. Procedures for hydromechanic ground interaction analysis have been devel-
oped. An application example demonstrated the significant effect of pore water pressures and 
seepage forces on the behavior of tunnels. The solution is applicable to tunneling in weak rocks, 
highly fractured rocks, crushed rocks (e.g. fault zones), and general soil-like materials, sub-
jected to high water pressures.  
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